No worries. :)
$\noindent 1) a) A particular solution is $\vec{x}_p = (0,1,0,0) = \vec{e}_2$. In fact in general, for ANY $m\times n$ matrix $A$, we have $A \vec{e}_j = \text{ column } j\text{ of }A$, where $\vec{e}_j$ is the $j$th standard basis vector for $\mathbb{C}^n$ or $\mathbb{R}^n$, for...