$\noindent If we substitute $u = 4-x^{2}$, then $\mathrm{d}u = -2x\,\mathrm{d}x \Rightarrow 5x \,\mathrm{d}x = -\frac{5}{2}\,\mathrm{d}u$. Hence$
$$\begin{align*}\int \frac{5x}{4-x^{2}}\,\mathrm{d}x &= -\frac{5}{2}\int \frac{\mathrm{d}u}{\sqrt{u}} \\ &= -\frac{5}{2}\times 2\sqrt{u}\\ &= -5u \\...