Re: HSC 2016 MX2 Combinatorics Marathon
$Here's a question:$
$Let $n,m,r$ be positive integers with $n,m\geq r$.$
$Show that $C(m,r)\cdot P(n,r)=P(m,r)\cdot C(n,r)$, where $C(n,r)$ is ``$n$ choose $r$'' ($^n C_r$) and $P(n,r)$ is $^nP_r$.$
$Bonus: provide a combinatorial interpretation.$