$\noindent Note that clearly $f(x)>0$ whenever $x\geq 0$. Note $f(x) = \frac{1-x^{2n+1}}{1-x}$ by the GP sum formula for any $x\neq 1$. For negative $x$, we have $x^{2n+1}<0$, so $1-x^{2n+1}>0$, and $1-x>0$, so $f(x) > 0$. So $f(x)>0$ for any real $x$.$