$\noindent The answer is $V = \pi\int_{0}^{1}x^{2}\left(x^{3} -3\right)^{4}\,\mathrm{d}x$. We can substitute $u=x^{3}-3$, $\frac{1}{3}\mathrm{d}u = x^{2}\,\mathrm{d}x$. When $x=0$, $u=-3$, and when $x = 1$, $u=-2$. So$
$$\begin{align*}V &= \pi \int_{-3}^{-2}\frac{1}{3}u^{4}\,\mathrm{d}u \\ &=...