• Interested in being a marker for this year's BoS Maths Trials?
    Let us know before 31 August, see this thread for details

HSC 2015 MX2 Marathon (archive) (2 Viewers)

Status
Not open for further replies.

Drsoccerball

Well-Known Member
Joined
May 28, 2014
Messages
3,647
Gender
Undisclosed
HSC
2015
Re: HSC 2015 4U Marathon

correct, but can you give the reason why? (unless it was already posted)
Let S(n) be the number of ways of climbing n steps.

The first move is either 1 step or 2 steps.
If it is 1 step, there are S(n-1) ways of climbing the remaining n-1 steps.
If it is 2 steps, there are S(n-2) ways of climbing the remaining n-2 steps.
So S(n) = S(n-1) + S(n-2), for n>2
This is the definition of the Fibonacci series.
The base cases S(1) and S(2) must be actually counted ... S(1) = 1, S(2) = 2.
These are the 2nd & 3rd terms of the Fibonacci series.
.
 

Drsoccerball

Well-Known Member
Joined
May 28, 2014
Messages
3,647
Gender
Undisclosed
HSC
2015
Re: HSC 2015 4U Marathon

But cant you subtract the 1st equation by the 2nd one and get the reverse?
Thats what i was thinking aahah tried getting passed your security in picking up mistakes
 

Ekman

Well-Known Member
Joined
Oct 23, 2014
Messages
1,611
Gender
Male
HSC
2015
Re: HSC 2015 4U Marathon

Thats what i was thinking aahah tried getting passed your security in picking up mistakes
I answered the question like porcupinetree did in the exam, but when I looked back over the proof, I realised I didn't prove that
 

Zlatman

Member
Joined
Nov 4, 2014
Messages
73
Gender
Male
HSC
2015
Re: HSC 2015 4U Marathon

I'm not sure if there's much mathematical merit behind this, but if p, q and r are positive integers, wouldn't the only case for which holds true be when p = q = r = 2 (pqr = 8)?

p, q or r cannot equal 1, since 3 isn't a factor of 64.

When any of them are an integer greater than 2, there's no possible way to make 64 from the 3 sets of brackets. If p = 3, 4, 5, then p + 2 = 5, 6 or 7, which aren't factors of 64. If p = 6 (p + 2 = 8), then (q+2)(r+2) = 8, which can't be true, since each set of brackets must be greater than or equal to 3. Any number greater than 6 will have the same result.

The only other time holds true (with these conditions) is if we include 0 as a positive integer (which isn't right). If p = 0, then (q+2)(r+2) = 32, which can be made with q = 2 and r = 6, for example. In this case, pqr = 0 < 8.

I hope that makes some sense.
 
Last edited:

Ekman

Well-Known Member
Joined
Oct 23, 2014
Messages
1,611
Gender
Male
HSC
2015
Re: HSC 2015 4U Marathon

I'm not sure if there's much mathematical merit behind this, but if p, q and r are positive integers, wouldn't the only case for which holds true be when p = q = r = 2 (pqr = 8)?

p, q or r cannot equal 1, since 3 isn't a factor of 64.

When any of them are an integer greater than 2, there's no possible way to make 64 from the 3 sets of brackets. If p = 3, 4, 5, then p + 2 = 5, 6 or 7, which aren't factors of 64. If p = 6 (p + 2 = 8), then (q+2)(r+2) = 8, which can't be true, since each set of brackets must be greater than or equal to 3. Any number greater than 6 will have the same result.


The only other time holds true is if we include 0 as a positive integer (which isn't right). If p = 0, then (q+2)(r+2) = 32, which can be made with q = 2 and r = 6, for example. In this case, pqr = 0 < 8.

I hope that makes some sense.
I may have confused the conditions for p,q,r for another question. The one before it was also an inequalities question that required squeeze theorem so it was fun to prove. So I may have confused the conditions between those two questions
 

Zlatman

Member
Joined
Nov 4, 2014
Messages
73
Gender
Male
HSC
2015
Re: HSC 2015 4U Marathon

I may have confused the conditions for p,q,r for another question. The one before it was also an inequalities question that required squeeze theorem so it was fun to prove. So I may have confused the conditions between those two questions
I guess p, q and r could just be positive? ¯\_(ツ)_/¯
 

Kaido

be.
Joined
Jul 7, 2014
Messages
797
Gender
Male
HSC
2015
Re: HSC 2015 4U Marathon

Let p+2 = a , q+2 =b r+2=c

Therefore (p+2) + (q+2) + (r+2) > 3 cuberoot ((P+2)(Q+2)(r+2))
Simplifying: p+q+r > 6

Now p+q+r > 3 cuberoot (pqr)
Rearranging, pqr < (P+q+r/3)^3
therefore, pqr < (6/2)^3
pqr < 8

Does this work?

Edit: nvm, i see peeps have done this and i guess it doesnt work
 
Last edited:

Paradoxica

-insert title here-
Joined
Jun 19, 2014
Messages
2,546
Location
Outside reality
Gender
Male
HSC
2016
Re: HSC 2015 4U Marathon




Adding these three inequalities yields:

The strict inequality is true since all three inequalities are zero at different values of x.
Adding only furthers the strictness of the inequality, which leads to:

Which after re-arranging gives the desired inequality.
Now, my question is, how many marks would I get (compared to whatever would be given) in the HSC for doing it this way instead of calculus? (I have nothing against calculus, it's just that I will always try to solve a problem in the most elegant way I can (quickly) think of)
 
Last edited:
Status
Not open for further replies.

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top