U did sillies a1079atw. Please check z^2= 1+....... and then u continued on with z = 1+....
I'll give you some hints:
7) You can do the sub u=x^2 then solve the quadratic, or:
Multiply both sides by (z^2+1)
8)Similarly do a substitution or multiply both sides by (z^2-1)
9) We re-arrange:
Then roots of unity.
Like this?
((z-1)/(z+1))^6=-1
(z-1)/(z+1)= [cis((2kpi+pi)/6)]
Now z-1= (z+1)(cis ((2pi+pi)/6))
z-1 = zcis ((2kpi+pi)/6))+ cis(cis ((2pi+pi)/6)
Since z is factorable
z(1- cis((2kpi+pi)/6)) -1 = cis ((2kpi+pi)/6)
Therefore z= (1+(cis ((2pi+pi)/6))) / (1- (cis ((2pi+pi)/6)))
Now we change to polar form:
z= (1+ cos ((2pi+pi)/6) + i sin ((2pi+pi)/6))/ (1- cos ((2pi+pi)/6) - i sin ((2pi+pi)/6))
Now using double angle
z=
(2cos^2((2kpi+pi)/12) + 2icos ((2kpi+pi)/12) x sin ((2kpi+pi)/12)
) /
(2sin^2((2kpi+pi)/12) - 2i cos((2kpi+pi)/12) x sin((2kpi+pi)/12)
)
Factorising we get :
(2cos((2kpi+pi)/12) x (cos((2kpi+pi)/12)+ sin((2kpi+pi)/12)
)/
( 2sin ((2kpi+pi)/12) x (sin((2kpi+pi)/12) - i cos((2kpi+pi)/12))
)
Now we can take out the -i from the denominator and set in it the polar form x + iy
This leads to :
(cos((2kpi+pi)/12) x (cos((2kpi+pi)/12)+ sin((2kpi+pi)/12)
)/
( -isin ((2kpi+pi)/12) x ( cos ((2kpi+pi)/12) + sin((2kpi+pi)/12)))
)
This leads to cot ((2kpi+pi)/12)/(-i )
= i cot((2kpi+pi)/12)
let k=0,+_ 1, +_2, -3
Now can find solutions.