• YOU can help the next generation of students in the community!
    Share your trial papers and notes on our Notes & Resources page

Pleaseee Helppp!!!! (1 Viewer)

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
First part's here
<a href="http://www.codecogs.com/eqnedit.php?latex=\begin{align*} A&=\int ^{3}_{-2}\left( x@plus;6-x^2\right )dx\\ &=\left[\frac{x^2}{2}@plus;6x-\frac{x^3}{3} \right ]^{3}_{-2}\\ &=\left(\frac{3^2}{2}@plus;6\cdot 3 -\frac{3^3}{3} \right )-\left(\frac{(-2)^2}{2}@plus;6\cdot (-2) -\frac{(-2)^3}{3} \right )\\ &=\frac{27}{2}@plus;\frac{22}{3}\\ &=\frac{125}{6} \end{align*}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\begin{align*} A&=\int ^{3}_{-2}\left( x+6-x^2\right )dx\\ &=\left[\frac{x^2}{2}+6x-\frac{x^3}{3} \right ]^{3}_{-2}\\ &=\left(\frac{3^2}{2}+6\cdot 3 -\frac{3^3}{3} \right )-\left(\frac{(-2)^2}{2}+6\cdot (-2) -\frac{(-2)^3}{3} \right )\\ &=\frac{27}{2}+\frac{22}{3}\\ &=\frac{125}{6} \end{align*}" title="\begin{align*} A&=\int ^{3}_{-2}\left( x+6-x^2\right )dx\\ &=\left[\frac{x^2}{2}+6x-\frac{x^3}{3} \right ]^{3}_{-2}\\ &=\left(\frac{3^2}{2}+6\cdot 3 -\frac{3^3}{3} \right )-\left(\frac{(-2)^2}{2}+6\cdot (-2) -\frac{(-2)^3}{3} \right )\\ &=\frac{27}{2}+\frac{22}{3}\\ &=\frac{125}{6} \end{align*}" /></a>

I'll do the second part once I get back from the gym if nobody's posted it by then.
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2@plus;(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2@plus;6|}{\sqrt{1^2@plus;1^2}}=\frac{|p-p^2@plus;6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2@plus;6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2@plus;6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2@plus;6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2@plus;6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2@plus;6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2+(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2+6|}{\sqrt{1^2+1^2}}=\frac{|p-p^2+6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2+6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2+6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2+6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2+6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2+6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" title="\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2+(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2+6|}{\sqrt{1^2+1^2}}=\frac{|p-p^2+6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2+6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2+6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2+6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2+6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2+6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" /></a>

Also, this should really be in the MX1 forum.
 
Last edited:

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Im guessing past hsc papers "HSC Mathematics by topic"
 

umm what

Banned
Joined
Nov 6, 2011
Messages
609
Location
North Ryde
Gender
Female
HSC
N/A
That's a very inefficient way of doing the first part. The two quarter-circles cancel out and you're left with finding the area of a trapezium. No integration necessary.
So u just integrate the equation of y=2 and y= -x+6 ??????and whats the diff b/w part (i) and (ii)????
 

umm what

Banned
Joined
Nov 6, 2011
Messages
609
Location
North Ryde
Gender
Female
HSC
N/A
First part's here
<a href="http://www.codecogs.com/eqnedit.php?latex=\begin{align*} A&=\int ^{3}_{-2}\left( x@plus;6-x^2\right )dx\\ &=\left[\frac{x^2}{2}@plus;6x-\frac{x^3}{3} \right ]^{3}_{-2}\\ &=\left(\frac{3^2}{2}@plus;6\cdot 3 -\frac{3^3}{3} \right )-\left(\frac{(-2)^2}{2}@plus;6\cdot (-2) -\frac{(-2)^3}{3} \right )\\ &=\frac{27}{2}@plus;\frac{22}{3}\\ &=\frac{125}{6} \end{align*}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\begin{align*} A&=\int ^{3}_{-2}\left( x+6-x^2\right )dx\\ &=\left[\frac{x^2}{2}+6x-\frac{x^3}{3} \right ]^{3}_{-2}\\ &=\left(\frac{3^2}{2}+6\cdot 3 -\frac{3^3}{3} \right )-\left(\frac{(-2)^2}{2}+6\cdot (-2) -\frac{(-2)^3}{3} \right )\\ &=\frac{27}{2}+\frac{22}{3}\\ &=\frac{125}{6} \end{align*}" title="\begin{align*} A&=\int ^{3}_{-2}\left( x+6-x^2\right )dx\\ &=\left[\frac{x^2}{2}+6x-\frac{x^3}{3} \right ]^{3}_{-2}\\ &=\left(\frac{3^2}{2}+6\cdot 3 -\frac{3^3}{3} \right )-\left(\frac{(-2)^2}{2}+6\cdot (-2) -\frac{(-2)^3}{3} \right )\\ &=\frac{27}{2}+\frac{22}{3}\\ &=\frac{125}{6} \end{align*}" /></a>

I'll do the second part once I get back from the gym if nobody's posted it by then.
Thanks bro! Can u do the second part as well? :)
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
Thanks bro! Can u do the second part as well? :)
I did:
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2@plus;(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2@plus;6|}{\sqrt{1^2@plus;1^2}}=\frac{|p-p^2@plus;6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2@plus;6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2@plus;6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2@plus;6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2@plus;6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2@plus;6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2+(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2+6|}{\sqrt{1^2+1^2}}=\frac{|p-p^2+6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2+6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2+6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2+6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2+6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2+6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" title="\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2+(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2+6|}{\sqrt{1^2+1^2}}=\frac{|p-p^2+6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2+6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2+6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2+6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2+6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2+6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" /></a>

Also, this should really be in the MX1 forum.
 

umm what

Banned
Joined
Nov 6, 2011
Messages
609
Location
North Ryde
Gender
Female
HSC
N/A
That's a very inefficient way of doing the first part. The two quarter-circles cancel out and you're left with finding the area of a trapezium. No integration necessary.
Whats the difference between part (i) and (ii) ????
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top