<a href="http://www.codecogs.com/eqnedit.php?latex=\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2@plus;(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2@plus;6|}{\sqrt{1^2@plus;1^2}}=\frac{|p-p^2@plus;6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2@plus;6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2@plus;6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2@plus;6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2@plus;6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2@plus;6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2+(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2+6|}{\sqrt{1^2+1^2}}=\frac{|p-p^2+6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2+6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2+6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2+6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2+6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2+6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" title="\\ \textrm{Length of Base of}~\triangle ABP=\sqrt{(3-(-2))^2+(9-4)^2}=5\sqrt{2}\\ \textrm{Height}= \frac{|p-p^2+6|}{\sqrt{1^2+1^2}}=\frac{|p-p^2+6|}{\sqrt{2}}\\ ~\\ A=\frac{1}{2}bh=\frac{1}{2}\cdot 5\sqrt{2} \cdot \frac{|p-p^2+6|}{\sqrt{2}}\\ =\frac{5}{2}|p-p^2+6|\\ ~\\ \textrm{Now, we're only concerned with values of p between -2 and 3 and for all of those values}~p-p^2+6~\textrm{is positive, so the expression becomes}~\\ A=\frac{5}{2}(p-p^2+6)\\ \frac{dA}{dp}=\frac{5}{2}(1-2p)\\ \frac{d^2A}{dp^2}=-5\\ \textrm{Maximum value of A occurs when}~\frac{dA}{dP}=0~\textrm{since}~\frac{d^2A}{dp^2}=-5<0~\textrm{for all values of p}\\ ~\\ \frac{5}{2}(1-2p)=0\\ 2p=1\\ p=\frac{1}{2}\\ ~\\ \therefore A_{\textrm{max}}=\frac{5}{2}(\frac{1}{2}-\left(\frac{1}{2} \right )^2+6)=\frac{5}{2}\cdot \frac{25}{4}=\frac{125}{8}~\textrm{Which is }\frac{3}{4}~\textrm{the area of the parabolic segment as required.}" /></a>
Also, this should really be in the MX1 forum.