Reaction haha.I'm not sure why you added the part for, but that's right.
Yes. They occur when you e^f(x) the left and right branches.
Does it have inflections?
Haha I made a very similar question to this a couple of months ago, but the first question was:Using the fact that <a href="http://www.codecogs.com/eqnedit.php?latex=arg\frac{z_{1}}{z_{2}}=argz_{1}-argz_{2}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?arg\frac{z_{1}}{z_{2}}=argz^{_{1}}-argz_{2}" title="arg\frac{z_{1}}{z_{2}}=argz^{_{1}}-argz_{2}" /></a>
Prove that <a href="http://www.codecogs.com/eqnedit.php?latex=tan^{-1}2-tan^{-1}\frac{1}{3}=\frac{\pi }{4}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?tan^{-1}2-tan^{-1}\frac{1}{3}=\frac{\pi }{4}" title="tan^{-1}2-tan^{-1}\frac{1}{3}=\frac{\pi }{4}" /></a>
let z1 = 1 + 2i and z2 = 3 +i
<a href="http://www.codecogs.com/eqnedit.php?latex=\\\textrm{Let}~z_1=1@plus;2i~\textrm{and}~z_2=3@plus;i\\ \arg z_1=\frac{2}{1}=2\\ \arg z_2=\frac{1}{3}\\ ~\\\textrm{Now,}\\ \frac{z_1}{z_2} =\frac{(1@plus;2i)(3-i)}{(3@plus;i)(3-i))}=\frac{5@plus;5i}{10}\\~\\ \therefore \arg\frac{z_1}{z_2}=\frac{\frac{1}{2}}{\frac{1}{2}}=1\\ \textrm{But}~\arg\frac{z_1}{z_2}=\arg z_1-\arg z_2\\ \therefore \tan^{-1}2-\tan^{-1}\frac{1}{3}=\tan^{-1}1=\frac{\pi}{4}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\\textrm{Let}~z_1=1+2i~\textrm{and}~z_2=3+i\\ \arg z_1=\frac{2}{1}=2\\ \arg z_2=\frac{1}{3}\\ ~\\\textrm{Now,}\\ \frac{z_1}{z_2} =\frac{(1+2i)(3-i)}{(3+i)(3-i))}=\frac{5+5i}{10}\\~\\ \therefore \arg\frac{z_1}{z_2}=\frac{\frac{1}{2}}{\frac{1}{2}}=1\\ \textrm{But}~\arg\frac{z_1}{z_2}=\arg z_1-\arg z_2\\ \therefore \tan^{-1}2-\tan^{-1}\frac{1}{3}=\tan^{-1}1=\frac{\pi}{4}" title="\\\textrm{Let}~z_1=1+2i~\textrm{and}~z_2=3+i\\ \arg z_1=\frac{2}{1}=2\\ \arg z_2=\frac{1}{3}\\ ~\\\textrm{Now,}\\ \frac{z_1}{z_2} =\frac{(1+2i)(3-i)}{(3+i)(3-i))}=\frac{5+5i}{10}\\~\\ \therefore \arg\frac{z_1}{z_2}=\frac{\frac{1}{2}}{\frac{1}{2}}=1\\ \textrm{But}~\arg\frac{z_1}{z_2}=\arg z_1-\arg z_2\\ \therefore \tan^{-1}2-\tan^{-1}\frac{1}{3}=\tan^{-1}1=\frac{\pi}{4}" /></a>Using the fact that <a href="http://www.codecogs.com/eqnedit.php?latex=arg\frac{z_{1}}{z_{2}}=argz_{1}-argz_{2}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?arg\frac{z_{1}}{z_{2}}=argz^{_{1}}-argz_{2}" title="arg\frac{z_{1}}{z_{2}}=argz^{_{1}}-argz_{2}" /></a>
Prove that <a href="http://www.codecogs.com/eqnedit.php?latex=tan^{-1}2-tan^{-1}\frac{1}{3}=\frac{\pi }{4}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?tan^{-1}2-tan^{-1}\frac{1}{3}=\frac{\pi }{4}" title="tan^{-1}2-tan^{-1}\frac{1}{3}=\frac{\pi }{4}" /></a>
Nah, I already did it. It was in a question by topic book but I thought it was a neat question so I posted itwere u asking this because u didnt know how or just as a forum question? nice question
This problem can be further generalised.
Here is an extension to deswa1's problem:
Show that all the values satisfying the condition...
... lie on the hyperbola:
The formula you have with the minus sign is a specific case for the generalised version:Before I have a go, is it meant to be inverse tan(x) MINUS inverse tan(y) or is the question you posted correct?
Thanks for that correction. It's become habit for me to type x -> infinity now haha.Dont you mean the limit as n approaches infinity?
After tedious working out,Here's a bit of a tricky question, similar to that in the HSC (forgot which year, I think 2007?)