• Interested in being a marker for this year's BoS Maths Trials?
    Let us know before 31 August, see this thread for details

Complex Locus (1 Viewer)

cyl123

Member
Joined
Dec 17, 2005
Messages
95
Location
N/A
Gender
Male
HSC
2007
arg(z-2)=k.arg(z^2-2z)
If mod(z-2)=2, then;
arg(2)=k.arg(2z) [idk if this is correct]
But, mod(z-2)=2
ie. z-2=2 or z-2=-2
Thus, z=4 or 0 but arg(0) is undefined ie. z=4

arg(2)=k.arg(8)
arg(2)=3k.arg(2)
k=1/3
arg(2)=0 btw..... so that doesnt work (division via 0)
|z-2|=2 doesnt imply z-2=2 or -2.... z-2 could be 1+sqrt(3)i

An algebraic solution would be

|z-2|=2 --> z-2=2cisx for some x (ie arg(z-2)=x)
z=2(cosx+1+isinx)

Note cosx+1=2cos^2(x/2) and sinx=2cos(x/2)sin(x/2)
z=2(2cos(x/2))cis(x/2) after simplification
so arg(z)=x/2

so arg(z-2)=k.arg(z^2-2z)=karg(z)+karg(z-2)
so x=kx/2+kx
So 1=3k/2---> k=2/3

This is basically the same as the geometric solution where we get 2arg(z)=arg(z-2)
 
Last edited:

addikaye03

The A-Team
Joined
Nov 16, 2006
Messages
1,256
Location
Albury-Wodonga, NSW
Gender
Male
HSC
2008
if this is the question
'find k if arg(z-2)=k arg(z^2-2z)' and there are no more conditions, then k varies depending on z doesnt it? at least that's what Simon and I think... but our 4U knowledge is getting rusty so yeh...
Nah you are right, i viewed the Question wrong. The extra information that was provided after i posted that attempt would have been useful! lol Besides i'm not going to disagree with you+simon lol
 
Last edited:

shaon0

...
Joined
Mar 26, 2008
Messages
2,023
Location
Guess
Gender
Male
HSC
2009
arg(2)=0 btw..... so that doesnt work (division via 0)
|z-2|=2 doesnt imply z-2=2 or -2.... z-2 could be 1+sqrt(3)i

An algebraic solution would be

|z-2|=2 --> z-2=2cisx for some x (ie arg(z-2)=x)
z=2(cosx+1+isinx)

Note cosx+1=2cos^2(x/2) and sinx=2cos(x/2)sin(x/2)
z=2(2cos(x/2))cis(x/2) after simplification
so arg(z)=x/2

so arg(z-2)=k.arg(z^2-2z)=karg(z)+karg(z-2)
so x=kx/2+kx
So 1=3k/2---> k=2/3

This is basically the same as the geometric solution where we get 2arg(z)=arg(z-2)
Oh ok, thanks for the correction.
 

untouchablecuz

Active Member
Joined
Mar 25, 2008
Messages
1,693
Gender
Male
HSC
2009
arg(z-2)=k.arg(z^2-2z)
If mod(z-2)=2, then;
arg(2)=k.arg(2z) [idk if this is correct]
But, mod(z-2)=2
ie. z-2=2 or z-2=-2
Thus, z=4 or 0 but arg(0) is undefined ie. z=4

arg(2)=k.arg(8)
arg(2)=3k.arg(2)
k=1/3

This solution is probably incorrect as I'm rusty with 4u
Gurmies, how did you do it geometrically?

 
Last edited:

adomad

HSC!!
Joined
Oct 10, 2008
Messages
540
Gender
Male
HSC
2010
another question....


find the locus of z if:

Arg(z-i) - arg(z+1) = pi/2

is the answer a semi circle that has the points i and -1 at the ends?? (2nd quad)
 

study-freak

Bored of
Joined
Feb 8, 2008
Messages
1,128
Gender
Male
HSC
2009
another question....


find the locus of z if:

Arg(z-i) - arg(z+1) = pi/2

is the answer a semi circle that has the points i and -1 at the ends?? (2nd quad)
Yep, but exclude (-1,0), (0,1)
 

adomad

HSC!!
Joined
Oct 10, 2008
Messages
540
Gender
Male
HSC
2010
Yep, but exclude (-1,0), (0,1)
so just sketching hte locus would be fine?, or do you think i need to find it out using x and y.... its worth 2 marks... what do you think that marks are awarded for??

i got it from some 4U paper 2006
 

study-freak

Bored of
Joined
Feb 8, 2008
Messages
1,128
Gender
Male
HSC
2009
so just sketching hte locus would be fine?, or do you think i need to find it out using x and y.... its worth 2 marks... what do you think that marks are awarded for??

i got it from some 4U paper 2006
Well, use geometric argument and just write the equation of the circle with restrictions.
That's prob too much for a 2 marker but just to be safe.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top