arg(2)=0 btw..... so that doesnt work (division via 0)arg(z-2)=k.arg(z^2-2z)
If mod(z-2)=2, then;
arg(2)=k.arg(2z) [idk if this is correct]
But, mod(z-2)=2
ie. z-2=2 or z-2=-2
Thus, z=4 or 0 but arg(0) is undefined ie. z=4
arg(2)=k.arg(8)
arg(2)=3k.arg(2)
k=1/3
|z-2|=2 doesnt imply z-2=2 or -2.... z-2 could be 1+sqrt(3)i
An algebraic solution would be
|z-2|=2 --> z-2=2cisx for some x (ie arg(z-2)=x)
z=2(cosx+1+isinx)
Note cosx+1=2cos^2(x/2) and sinx=2cos(x/2)sin(x/2)
z=2(2cos(x/2))cis(x/2) after simplification
so arg(z)=x/2
so arg(z-2)=k.arg(z^2-2z)=karg(z)+karg(z-2)
so x=kx/2+kx
So 1=3k/2---> k=2/3
This is basically the same as the geometric solution where we get 2arg(z)=arg(z-2)
Last edited: