<a href="http://www.codecogs.com/eqnedit.php?latex=\int^{\frac{\pi}{4}}_0 \tan xdx=\int^{\frac{\pi}{4}}_0 \frac{\sin x}{\cos x}dx=-\int^{\frac{\pi}{4}}_0 \frac{-\sin x}{\cos x}dx \\ \textrm{Let}~u=\cos x\\ \textrm{When}~x=\frac{\pi}{4}~u=\frac{1}{\sqrt{2}}\\ \textrm{When}~x=0~u=1\\ ~\\ \textrm{Now, we know that}~\frac{d}{dx} \cos x=-\sin x\\ \therefore du=-\sin xdx\\~\\ \textrm{Upon substituting in for u we get}\\ \int^{\frac{\pi}{4}}_0 \tan xdx\\ =-\int^{\frac{1}{\sqrt{2}}}_{1}\frac{1}{u}du\\ =-\left[ \ln u\right]^{\frac{1}{\sqrt{2}}}_{1}\\ =-\ln(\frac{1}{\sqrt{2}}) @plus; \ln(1)\\ =\ln(\sqrt{2}) =\ln(2^{\frac{1}{2}}) =\frac{1}{2}\ln2" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\int^{\frac{\pi}{4}}_0 \tan xdx=\int^{\frac{\pi}{4}}_0 \frac{\sin x}{\cos x}dx=-\int^{\frac{\pi}{4}}_0 \frac{-\sin x}{\cos x}dx \\ \textrm{Let}~u=\cos x\\ \textrm{When}~x=\frac{\pi}{4}~u=\frac{1}{\sqrt{2}}\\ \textrm{When}~x=0~u=1\\ ~\\ \textrm{Now, we know that}~\frac{d}{dx} \cos x=-\sin x\\ \therefore du=-\sin xdx\\~\\ \textrm{Upon substituting in for u we get}\\ \int^{\frac{\pi}{4}}_0 \tan xdx\\ =-\int^{\frac{1}{\sqrt{2}}}_{1}\frac{1}{u}du\\ =-\left[ \ln u\right]^{\frac{1}{\sqrt{2}}}_{1}\\ =-\ln(\frac{1}{\sqrt{2}}) + \ln(1)\\ =\ln(\sqrt{2}) =\ln(2^{\frac{1}{2}}) =\frac{1}{2}\ln2" title="\int^{\frac{\pi}{4}}_0 \tan xdx=\int^{\frac{\pi}{4}}_0 \frac{\sin x}{\cos x}dx=-\int^{\frac{\pi}{4}}_0 \frac{-\sin x}{\cos x}dx \\ \textrm{Let}~u=\cos x\\ \textrm{When}~x=\frac{\pi}{4}~u=\frac{1}{\sqrt{2}}\\ \textrm{When}~x=0~u=1\\ ~\\ \textrm{Now, we know that}~\frac{d}{dx} \cos x=-\sin x\\ \therefore du=-\sin xdx\\~\\ \textrm{Upon substituting in for u we get}\\ \int^{\frac{\pi}{4}}_0 \tan xdx\\ =-\int^{\frac{1}{\sqrt{2}}}_{1}\frac{1}{u}du\\ =-\left[ \ln u\right]^{\frac{1}{\sqrt{2}}}_{1}\\ =-\ln(\frac{1}{\sqrt{2}}) + \ln(1)\\ =\ln(\sqrt{2}) =\ln(2^{\frac{1}{2}}) =\frac{1}{2}\ln2" /></a>