Smile12345
Active Member
- Joined
- May 30, 2013
- Messages
- 827
- Gender
- Undisclosed
- HSC
- 2014
No worries... Thanks.Aah I havn't done this topic and I'm afraid of giving you incomplete or wrong help... but I'll try:
The first derivative describes the gradient function of the original function (i.e. how it grows and decays). The second derivative describes the gradient function of the first derivative. So how does the second derivative describe the original function? Well that's quite hard to see if you're not that great at visualising but basically you map the point from the original to the first derivative to the second (best to generally memorise here imo).
A point of inflexion is where the graph changes concavity. Concavity basically describes the rate of change of the gradient.
If you picture y = x^2: It's concavity is upwards and hence its gradient always increases (it starts from very negative and then exponentially becomes very positive).
We can say a point of inflexion is a max/min point of the first derivative. This is harder to understand but if you think about it maybe you will see why its so... (sorry this is the limitations of my expression - I'm not a great teacher).