GoldyOrNugget
Señor Member
- Joined
- Jul 14, 2012
- Messages
- 583
- Gender
- Male
- HSC
- 2012
For ci), there must be exactly 2 solutions to the equation representing the intersection of the two shapes. Because this equation is a quadratic over x2 and the intersections are symmetric along the x-axis, there must be one solution to x2=0 which will provide 2 intersections with +/-.
For cii) the observation that had to be made was that if c=r, then there's only one solution to the equation -- x=0, because the circle is resting at the base of the parabola. This situation must be avoided, so c > r.
For cii) the observation that had to be made was that if c=r, then there's only one solution to the equation -- x=0, because the circle is resting at the base of the parabola. This situation must be avoided, so c > r.