bleakarcher
Active Member
- Joined
- Jul 8, 2011
- Messages
- 1,509
- Gender
- Male
- HSC
- 2013
What expression would give the sum of the following taken four at a time: tan(+/-x), tan(+/-y) and tan(+/-z)
Thanks guys
Thanks guys
are you implying that there are 6 roots to the polynomial, tan(x), tan(-x), tan(y), tan(-y), tan(z), tan(-z)?What expression would give the sum of the following taken four at a time: tan(+/-x), tan(+/-y) and tan(+/-z)
Thanks guys
<a href="http://www.codecogs.com/eqnedit.php?latex=a~monic~polynomial~with~roots~as~such\\ \\ (x-tan(x))(x-tan(-x))(x-tan(y))(x-tan(-y))(x-tan(z))(x-tan(-z))\\ \\ =(x-tan(x))(x@plus;tan(x))(x-tan(y))(x@plus;tan(y))(x-tan(z))(x@plus;tan(z))\\ \\ =(x^{2}-tan^{2}(x))(x^{2}-tan^{2}(y))(x^{2}-tan^{2}(z))\\ \\ shouldn't~have~used~x~as~both~variable~and~root~but~oh~well\\ \\ after~expanding~the~co-efficient~of~x^{2}~is~equal~to\\ \\ tan^{2}(x)tan^{2}(y)@plus;tan^{2}(x)tan^{2}(z)@plus;tan^{2}(y)tan^{2}(z)\\ \\ therefore\\ \\ \sum abcd=\frac{e}{a}\\ =tan^{2}(x)tan^{2}(y)@plus;tan^{2}(x)tan^{2}(z)@plus;tan^{2}(y)tan^{2}(z)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?a~monic~polynomial~with~roots~as~such\\ \\ (x-tan(x))(x-tan(-x))(x-tan(y))(x-tan(-y))(x-tan(z))(x-tan(-z))\\ \\ =(x-tan(x))(x+tan(x))(x-tan(y))(x+tan(y))(x-tan(z))(x+tan(z))\\ \\ =(x^{2}-tan^{2}(x))(x^{2}-tan^{2}(y))(x^{2}-tan^{2}(z))\\ \\ shouldn't~have~used~x~as~both~variable~and~root~but~oh~well\\ \\ after~expanding~the~co-efficient~of~x^{2}~is~equal~to\\ \\ tan^{2}(x)tan^{2}(y)+tan^{2}(x)tan^{2}(z)+tan^{2}(y)tan^{2}(z)\\ \\ therefore\\ \\ \sum abcd=\frac{e}{a}\\ =tan^{2}(x)tan^{2}(y)+tan^{2}(x)tan^{2}(z)+tan^{2}(y)tan^{2}(z)" title="a~monic~polynomial~with~roots~as~such\\ \\ (x-tan(x))(x-tan(-x))(x-tan(y))(x-tan(-y))(x-tan(z))(x-tan(-z))\\ \\ =(x-tan(x))(x+tan(x))(x-tan(y))(x+tan(y))(x-tan(z))(x+tan(z))\\ \\ =(x^{2}-tan^{2}(x))(x^{2}-tan^{2}(y))(x^{2}-tan^{2}(z))\\ \\ shouldn't~have~used~x~as~both~variable~and~root~but~oh~well\\ \\ after~expanding~the~co-efficient~of~x^{2}~is~equal~to\\ \\ tan^{2}(x)tan^{2}(y)+tan^{2}(x)tan^{2}(z)+tan^{2}(y)tan^{2}(z)\\ \\ therefore\\ \\ \sum abcd=\frac{e}{a}\\ =tan^{2}(x)tan^{2}(y)+tan^{2}(x)tan^{2}(z)+tan^{2}(y)tan^{2}(z)" /></a>^ that is right but do you mind going through the process mathematically?