Depends on your definition of cos(x)
.
Using the power series definition, cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ...
cos(x) - 1 = -x^2/2! + x^4/4! - x^6/6! + ...
(cos(x)-1)/x = -x + x^3/4! - x^5/6! + ...
Therefore, as x-> 0, (cos(x)-1)/x -> 0.
However, I doubt they'd accept that in the hsc.
Also note, for l'Hopital's rule, you would have to prove it before you use it, as it is not taught in the course. It can only be applied when the numerator and denominator approaches something of the form 0/0 or inf/inf.
Proof:
If f(x) and g(x) are functions and f'(a) and g'(a) exist, with f(x), g(x) -> 0 as x -> a, then
lim x->a f(x)/g(x)
= lim x->a [f(x) - f(a)]/[g(x) - (a)], as f(a) = g(a) = 0 (*)
= lim x-> a {[f(x) - f(a)]/(x-a)} / {[g(x) - g(a)]/(x-a)}
= {lim x-> a [f(x) - f(a)]/(x-a)}/{lim x->a [g(x) - g(a)]/(x-a)}
= f'(a)/g'(a), if the derivatives exist
(*) The fact that the derivatives exist at x=a implies that the functions are continuous at x=a. Hence f(a) = lim x->a f(x) = 0 and likewise for g.
You can treat the inf/inf case by letting h = 1/x and taking the limit as h-> 0.
Edit: I've noticed another thing. Try to find the derivative of cos(x) using first principles. You will see that it involves using the fact that (cosx -1)/x goes to 0 as x -> 0. So using l'Hopital's rule in this case may constitute circular reasoning (though, if you're lucky, your teacher may not notice). Best way to go is to use airie's method.