think u made a mistake there ^^use partial fractions; i don't have latex
1/((x^2)(1+x^2) = a/x^2+b/x+(cx+d)/(1+x^2)
a= 1/(1+0) = 1 [heaviside cover method]
(1+x^2) +bx(1+x^2) + (cx+d)x^2 = 1
substitute mutual value: x=i
(1+i^2) + bi(1+i^2) + (ci+d)(i^2) = 1
(i^2=-1 so 1+i^2 = 0)
ci+d = -1
c = 0, d = -1 (equating complex and real)
equating x of degree 1; b=0
therefore integral[dx/((x^2)(1+x^2))] = integral[1/x^2-1/(1+x^2)]dx
= -1/x - arctan(x) + c
Integrate dx/(x2(1+x2))
Thanks to anyone who can help me..
Um...you can't take variables out of the integral. You can only do that to constants. It's a bit like saying ∫ x dx = x ∫ dx = x² + c which is clearly FALSE as ∫ x dx = x²/2 + c.I = int (dx/(x<sup>2</sup>+x<sup>4</sup>)
= (1/2x+4x<sup>3</sup>)int(1/2x+4x<sup>3</sup>dx/(x<sup>2</sup>+x<sup>4</sup>)
= (1/2x+4x<sup>3</sup>)(log[x<sup>2</sup>+x<sup>4</sup>]) + c
whats wrong with it?think u made a mistake there ^^
u only put cx+d if the denominator is irreducablesee the part i highlighted? if the bottom is x^2 the top has to be bx+ c LOL. but looks like the bottom is x. either way u made some stupid mistake there xD ( sry for my shitty standard english expression im sure some1 will clean it up 4 me T.T )
and yea Treblas's method is god ^^
oo whoops big mistake LOl thanksUm...you can't take variables out of the integral. You can only do that to constants. It's a bit like saying ∫ x dx = x ∫ dx = x² + c which is clearly FALSE as ∫ x dx = x²/2 + c.