• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

Induction q (1 Viewer)

ExtremelyBoredUser

Bored Uni Student
Joined
Jan 11, 2021
Messages
2,479
Location
m
Gender
Male
HSC
2022
Note: The induction procedure is different for every person so I'm just going to focus on the solution itself, ask your teacher for how they'd like it when you start year 11.

[Base Case]

When there is 3 sides, you will form a triangle and this has no diagonals.



Hence, n = 3 is a true statement.

[Induction Hypothesis]

Suppose k is an integer and true for n >= 3.

n = k;

Polygon with k sides will have diagonals

[Proving stage]

n = k + 1;

Claim/Proof: We have to prove a k+1 side polygon has diagonals

From induction hypothesis, a polygon with k sides will have diagonals. When adding an extra side, the new vertex will form k - 2 diagonals with other vertexes ignoring those adjacent to it. As the new side is added, it also creates an extra diagonal from the previous vertex point with the first vertex point (please draw cases for n =4,5,6 to understand). This is unaccounted when considering the diagonals only formed from the new vertex.

Here are some really shoddy diagrams to give an idea of what I'm talking about. The red diagonal (please ignore the fact the diagonal's not straight) is the diagonal thats unaccounted for from going from n = 5 to n = 6 (you can consider this as k = 5) and the yellow vertex is the new vertex. You can see k - 2 ( 6 - 2 = 4) diagonals are formed solely from the diagonals however the edges are not considered.

1642252200675.png 1642252107996.png

n = 5 to n = 6.

This the logic we're using for n = k + 1.



...


Hence proven by principles of mathematical induction for n>=3 yadda yadda this part is whatever your teacher wants etc.

For these type of qs, I would just try to draw diagrams for the cases and if you still don't get the pattern, draw for more cases and it'll become apparent (as above for n = 5 to n = 6) and then proceed. I think there's similar type qs like proving by induction that n lines divding the plane into certain amount regions or smthn like that.
 
Last edited:

=)(=

Active Member
Joined
Jul 14, 2021
Messages
647
Gender
Male
HSC
2023
Note: The induction procedure is different for every person so I'm just going to focus on the solution itself, ask your teacher for how they'd like it when you start year 11.

[Base Case]

When there is 3 sides, you will form a triangle and this has no diagonals.



Hence, n = 3 is a true statement.

[Induction Hypothesis]

Suppose k is an integer and true for n >= 3.

n = k;

Polygon with k sides will have diagonals

[Proving stage]

n = k + 1;

Claim/Proof: We have to prove a k+1 side polygon has diagonals

From induction hypothesis, a polygon with k sides will have diagonals. When adding an extra side, the new vertex will form k - 2 diagonals with other vertexes ignoring those adjacent to it. As the new side is added, it also creates an extra diagonal from the previous vertex point with the first vertex point (please draw cases for n =4,5,6 to understand). This is unaccounted when considering the diagonals only formed from the new vertex.

Here are some really shoddy diagrams to give an idea of what I'm talking about. The red diagonal (please ignore the fact the diagonal's not straight) is the diagonal thats unaccounted for from going from n = 5 to n = 6 (you can consider this as k = 5) and the yellow vertex is the new vertex. You can see k - 2 ( 6 - 2 = 4) diagonals are formed solely from the diagonals however the edges are not considered.

View attachment 34655 View attachment 34654

n = 5 to n = 6.

This the logic we're using for n = k + 1.



...


Hence proven by principles of mathematical induction for n>=3 yadda yadda this part is whatever your teacher wants etc.

For these type of qs, I would just try to draw diagrams for the cases and if you still don't get the pattern, draw for more cases and it'll become apparent (as above for n = 5 to n = 6) and then proceed. I think there's similar type qs like proving by induction that n lines divding the plane into certain amount regions or smthn like that.
ohh makes sense now, I also had another question to do with induction with inequalities, I saw this step in one worked example somewhere was the 1+1/2k able to be discarded as since k>1 removing the expression just makes the rhs of a lesser value?1642307168578.png
 

ExtremelyBoredUser

Bored Uni Student
Joined
Jan 11, 2021
Messages
2,479
Location
m
Gender
Male
HSC
2022
ohh makes sense now, I also had another question to do with induction with inequalities, I saw this step in one worked example somewhere was the 1+1/2k able to be discarded as since k>1 removing the expression just makes the rhs of a lesser value?View attachment 34659
Yeah pretty much, the value of is always going to be strictly greater than 1

(you can consider it like a constant which is > 1 and so the magnitude of 1/2k+1 could not be less than 1/2k+1 for k > 1 as stated in the q)

so therefore the RHS in line 1 would be greater than and hence LHS would be greater than .
 
Last edited:

=)(=

Active Member
Joined
Jul 14, 2021
Messages
647
Gender
Male
HSC
2023
Soz got another one, for part a i get (a^n-b^n)(a-b) greater than or equal to 0 but im lost from there1642312168953.png
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top