• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

HSC Mathematics Marathon (1 Viewer)

Drongoski

Well-Known Member
Joined
Feb 22, 2009
Messages
4,232
Gender
Male
HSC
N/A
If z is a complex number such that z = r(cosθ +isinθ), where r is real, show that arg(z+r) = (1/2)θ .





Geometrically, on an Argand diagram, you have a position vector, from origin of length r and with angle . Drawing a vector from end of this vector z to the right of length r, you now have 2 adjacent sides of a rhombus (sides of length r); z+r is then represented by the diagonal of this rhombus from the origin to the tip of vector z+r. By property of rhombus, this vector bisects the angle .
 
Last edited:

HyperComplexxx

ლ(ಠ_ಠ ლ)
Joined
Jan 12, 2011
Messages
460
Location
behind you
Gender
Undisclosed
HSC
2011
:spin:
Polynomial x^4 + qx^2 +rx + s = 0 has roots α, β, γ, δ. Find the value of the constant

term in the polynomial with roots 1-α^2 , 1-β^2 , 1-γ^2 , 1- δ^2.
:spin:
 

jyu

Member
Joined
Nov 14, 2005
Messages
622
Gender
Male
HSC
2006
:spin:
Polynomial x^4 + qx^2 +rx + s = 0 has roots α, β, γ, δ. Find the value of the constant

term in the polynomial with roots 1-α^2 , 1-β^2 , 1-γ^2 , 1- δ^2.
:spin:
(1-α^2)(1-β^2)(1-γ^2)(1-δ^2)
=(1-α)(1-β)(1-γ)(1-δ)(1+α)(1+β)(1+γ)(1+δ)
=(1+q+r+s)(1+q-r+s)
:spin:
 

rawrence

Member
Joined
Sep 14, 2010
Messages
171
Location
Auxiliary Circle
Gender
Male
HSC
2011
(1-α^2)(1-β^2)(1-γ^2)(1-δ^2)
=(1-α)(1-β)(1-γ)(1-δ)(1+α)(1+β)(1+γ)(1+δ)
=(1+q+r+s)(1+q-r+s)
:spin:
I got (q+s+1)²-r² which is equivalent but by first finding the equation which has roots (1-α²)(1-β²)(1-γ²)(1-δ²)

I like your method of finding products of roots but could you explain how you got from
HERE
=(1-α)(1-β)(1-γ)(1-δ)(1+α)(1+β)(1+γ)(1+δ)
TO
=(1+q+r+s)(1+q-r+s)
THERE?

Cheers
 
Joined
Apr 3, 2010
Messages
777
Gender
Male
HSC
2011
Expand P(x) = (x-1)(x+2)(x-3)(x+1)

And for the sake of the exercise, please don't just expand.
 

rawrence

Member
Joined
Sep 14, 2010
Messages
171
Location
Auxiliary Circle
Gender
Male
HSC
2011
Using t-result substitution and partial fractions I get down to:
2 [int 1/(t²-t+1) dt - int 1/t² +1 dt]
2 [int dt/((t-1/2)² + 3/4)] - 2[int dt/(t²+1)]
2 [2/(√3)*tan-1 (t-1/2)/(√3/2) - tan-1 t] + C

which is both unsimplified and illegible because I can't latex
 
Joined
Dec 31, 2009
Messages
4,741
Location
sarajevo
Gender
Female
HSC
2015
Uni Grad
2017
Using t-result substitution and partial fractions I get down to:
2 [int 1/(t²-t+1) dt - int 1/t² +1 dt]
2 [int dt/((t-1/2)² + 3/4)] - 2[int dt/(t²+1)]
2 [2/(√3)*tan-1 (t-1/2)/(√3/2) - tan-1 t] + C

which is both unsimplified and illegible because I can't latex
You're correct.

This should make it easier for anyone who wants the solution:



-----



-----



-----

 

Drongoski

Well-Known Member
Joined
Feb 22, 2009
Messages
4,232
Gender
Male
HSC
N/A
Very good. Maybe should have posted under Ext 1.
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top