MedVision ad

HSC 2013 Maths Marathon (archive) (6 Viewers)

Status
Not open for further replies.
Joined
Oct 29, 2011
Messages
872
Location
Narnia
Gender
Female
HSC
2013
Re: HSC 2013 2U Marathon

Arc length= 5pi/3 = circumference of cone
Hence radius of cone= 5/6
Radius of sector= 5 = slant height of cone
Therefore height of cone, H^2= 5^2 - 25/36
h= root(875/36)
Volume cone= 1/3pi R^2 h
= 1/3 pi 25/36 x root(875/36) ?
The answer is

125 root(35) pi / 648 cm^3
 

Menomaths

Exaı̸̸̸̸̸̸̸̸lted Member
Joined
Jul 9, 2013
Messages
2,373
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

Prove that:

 
Last edited:

andybandy

Member
Joined
Sep 1, 2012
Messages
294
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

<a href="http://www.codecogs.com/eqnedit.php?latex=\frac{sin\theta&space;cos^{2}\theta&space;-sin^{3}\theta&space;}{2cos^{3}\theta&space;-cos\theta&space;}&space;=&space;\frac{sin\theta&space;(cos^{2}\theta&space;-sin^{2}\theta)&space;}{cos\theta&space;(2cos^{2}\theta&space;-1)}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\frac{sin\theta&space;cos^{2}\theta&space;-sin^{3}\theta&space;}{2cos^{3}\theta&space;-cos\theta&space;}&space;=&space;\frac{sin\theta&space;(cos^{2}\theta&space;-sin^{2}\theta)&space;}{cos\theta&space;(2cos^{2}\theta&space;-1)}" title="\frac{sin\theta cos^{2}\theta -sin^{3}\theta }{2cos^{3}\theta -cos\theta } = \frac{sin\theta (cos^{2}\theta -sin^{2}\theta) }{cos\theta (2cos^{2}\theta -1)}" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex==&space;\frac{sin\theta&space;}{cos\theta&space;}.\frac{cos2\theta&space;}{cos2\theta&space;}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;\frac{sin\theta&space;}{cos\theta&space;}.\frac{cos2\theta&space;}{cos2\theta&space;}" title="= \frac{sin\theta }{cos\theta }.\frac{cos2\theta }{cos2\theta }" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex==&space;tan\theta&space;.1&space;=&space;tan\theta" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;tan\theta&space;.1&space;=&space;tan\theta" title="= tan\theta .1 = tan\theta" /></a>

Edit: Realised this is the 3 unit method, for the 2 unit method, you would change


<a href="http://www.codecogs.com/eqnedit.php?latex==&space;\frac{sin\theta(cos^{2}\theta&space;-&space;(1&space;-&space;cos^{2}\theta))}{cos\theta(2cos^{2}\theta-1)}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;\frac{sin\theta(cos^{2}\theta&space;-&space;(1&space;-&space;cos^{2}\theta))}{cos\theta(2cos^{2}\theta-1)}" title="= \frac{sin\theta(cos^{2}\theta - (1 - cos^{2}\theta))}{cos\theta(2cos^{2}\theta-1)}" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex==&space;\frac{sin\theta(2cos^{2}\theta&space;-&space;1)}{cos\theta(2cos^{2}\theta-1)}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;\frac{sin\theta(2cos^{2}\theta&space;-&space;1)}{cos\theta(2cos^{2}\theta-1)}" title="= \frac{sin\theta(2cos^{2}\theta - 1)}{cos\theta(2cos^{2}\theta-1)}" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex==&space;\frac{sin\theta}{cos\theta}&space;=&space;tan\theta" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;\frac{sin\theta}{cos\theta}&space;=&space;tan\theta" title="= \frac{sin\theta}{cos\theta} = tan\theta" /></a>
 
Last edited:

HeroicPandas

Heroic!
Joined
Mar 8, 2012
Messages
1,547
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

^U used 3U double angles

A hint is to never write a '1' as a '1'
 

Menomaths

Exaı̸̸̸̸̸̸̸̸lted Member
Joined
Jul 9, 2013
Messages
2,373
Gender
Male
HSC
2013
Re: HSC 2013 2U Marathon

<a href="http://www.codecogs.com/eqnedit.php?latex=\frac{sin\theta&space;cos^{2}\theta&space;-sin^{3}\theta&space;}{2cos^{3}\theta&space;-cos\theta&space;}&space;=&space;\frac{sin\theta&space;(cos^{2}\theta&space;-sin^{2}\theta)&space;}{cos\theta&space;(2cos^{2}\theta&space;-1)}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\frac{sin\theta&space;cos^{2}\theta&space;-sin^{3}\theta&space;}{2cos^{3}\theta&space;-cos\theta&space;}&space;=&space;\frac{sin\theta&space;(cos^{2}\theta&space;-sin^{2}\theta)&space;}{cos\theta&space;(2cos^{2}\theta&space;-1)}" title="\frac{sin\theta cos^{2}\theta -sin^{3}\theta }{2cos^{3}\theta -cos\theta } = \frac{sin\theta (cos^{2}\theta -sin^{2}\theta) }{cos\theta (2cos^{2}\theta -1)}" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex==&space;\frac{sin\theta&space;}{cos\theta&space;}.\frac{cos2\theta&space;}{cos2\theta&space;}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;\frac{sin\theta&space;}{cos\theta&space;}.\frac{cos2\theta&space;}{cos2\theta&space;}" title="= \frac{sin\theta }{cos\theta }.\frac{cos2\theta }{cos2\theta }" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex==&space;tan\theta&space;.1&space;=&space;tan\theta" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;tan\theta&space;.1&space;=&space;tan\theta" title="= tan\theta .1 = tan\theta" /></a>

Edit: Realised this is the 3 unit method, for the 2 unit method, you would change


<a href="http://www.codecogs.com/eqnedit.php?latex==&space;\frac{sin\theta(cos^{2}\theta&space;-&space;(1&space;-&space;cos^{2}\theta))}{cos\theta(2cos^{2}\theta-1)}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;\frac{sin\theta(cos^{2}\theta&space;-&space;(1&space;-&space;cos^{2}\theta))}{cos\theta(2cos^{2}\theta-1)}" title="= \frac{sin\theta(cos^{2}\theta - (1 - cos^{2}\theta))}{cos\theta(2cos^{2}\theta-1)}" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex==&space;\frac{sin\theta(2cos^{2}\theta&space;-&space;1)}{cos\theta(2cos^{2}\theta-1)}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;\frac{sin\theta(2cos^{2}\theta&space;-&space;1)}{cos\theta(2cos^{2}\theta-1)}" title="= \frac{sin\theta(2cos^{2}\theta - 1)}{cos\theta(2cos^{2}\theta-1)}" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex==&space;\frac{sin\theta}{cos\theta}&space;=&space;tan\theta" target="_blank"><img src="http://latex.codecogs.com/gif.latex?=&space;\frac{sin\theta}{cos\theta}&space;=&space;tan\theta" title="= \frac{sin\theta}{cos\theta} = tan\theta" /></a>
It's so much easier with the 3U method, wish we could use it



For this question why can't we use
 
Status
Not open for further replies.

Users Who Are Viewing This Thread (Users: 0, Guests: 6)

Top