1) x³/(2-x²) = (x³ - 2x + 2x)/(2-x²) = -x + 2x/(2-x²) which should be easier to integrate
2) f(x) = axsin(x) + bsin(x) + cxcos(x) + dcos(x)
f'(x) = asin(x) + axcos(x) + bcos(x) + ccos(x) - cxsin(x) - dsin(x)
= sin(x)[a-d-cx] + cos(x)[ax + b + c]
Since you want f'(x) = xcos(x) for all x, then c = 0, a = 1, a - d = 0, b + c = 0