Slide Rule said:
Try these:
Show:
arctan(4)-arctan(3/5)=pi/4
arcsin(3/5)+arctan(7/24)=arccos(3/5)
Find exactly:
sin(2arctan(4/3))
cos(arctan(4/3)-arccos(5/13))
sin(arccos(3/5)+arctan(-3/4))
Prove that:
arcsinx=arccos(sqrt(1-x^2)) for 0<=x<=1
to show
"arctan(4)-arctan(3/5)=pi/4"
let A=tan^-1 4 and B=tan^-1 (3\5)
tan A=4 and tan B=3\5
tan(A-B)=(tanA-tanB)\(1+tanAtanB)
=(4-3\5)\(1+12\5)
=1
.: A-B=pi\4
hence tan^-1 (4)-tan^-1 (3\5)=pi\4
to show: "arcsin(3/5)+arctan(7/24)=arccos(3/5)"
let sin^-1 (3\5)=A and tan^-1 (7\24)=B
sinA=3\5 and tan B=7\24
cos (A+B)=cosAcosB-sinAsinB
=(4\5)(24\25)-(3\5)(7\25)
=3\5
.: cos^-1 (3\5)=A+B
hence sin^-1 (3\5)+tan^-1 (7\24)=cos^-1 (3\5)
Find exactly:
"sin(2arctan(4/3))"
let tan^-1 (4\3)=A
tanA=(4\3)
.: sin(2arctan(4/3))"=sin(2A)=2sinAcosA=2(3\5)(4\5)
"cos(arctan(4/3)-arccos(5/13))"
let tan^-1 (4\3)=A and cos^-1 (5\13)=B
tanA=3\4 and cos B=5\13
.: cos(arctan(4/3)-arccos(5/13))=cos (A-B)=cosAcosB+sinAsinB
=(4\5)(5\13)+(3\5)(12\13)
"sin(arccos(3/5)+arctan(-3/4))"
let A=cos^-1 (3\5) and B=tan^-1 (-3\4)
cosA=3\5 and tanB=-3\4
.: sin(arccos(3/5)+arctan(-3/4))=sin(A+B)
=sinAcosB+cosAsinB
=(4\5)(4\5)+(3\5)(-3\5)
=7\25
is dat rite