Physics_FTW
New Member
- Joined
- Oct 4, 2010
- Messages
- 28
- Gender
- Male
- HSC
- 2012
Quick Question,
If you have a Bar magnet with its North Pole approaching a solenoid, a current will be induced into the solenoid to create a North Pole at the entrance to the solenoid (Hence South Pole on other side?)
Now, say the Magnet is 10cm long and the solenoid is 20cm long and the magnet actually moves through the solenoid.
I am confused as to what the readings on the galvanometer would be throughout the entire movement of the magnet through the solenoid.
So at these points
- North Pole approaching Left side of Solenoid
- North Pole enters Left side of Solenoid
- Enitre Magnet enters solenoid (South Pole moving away from Left side)
- North Pole approaches Right side of Solenoid (from the inside)
- North Pole exits right side of solenoid
- Entire magnet exits Right side of Solenoid
To me it doesnt make sense, especially when the entire magnet is in the solenoid as South Pole is moving away from one end (Induce current to create a North Pole at this end to try and 'attract it') and North Pole is approaching the other end (Inducing current to create a North Pole also at this end to try and 'repel it')
Much confusion?
If you have a Bar magnet with its North Pole approaching a solenoid, a current will be induced into the solenoid to create a North Pole at the entrance to the solenoid (Hence South Pole on other side?)
Now, say the Magnet is 10cm long and the solenoid is 20cm long and the magnet actually moves through the solenoid.
I am confused as to what the readings on the galvanometer would be throughout the entire movement of the magnet through the solenoid.
So at these points
- North Pole approaching Left side of Solenoid
- North Pole enters Left side of Solenoid
- Enitre Magnet enters solenoid (South Pole moving away from Left side)
- North Pole approaches Right side of Solenoid (from the inside)
- North Pole exits right side of solenoid
- Entire magnet exits Right side of Solenoid
To me it doesnt make sense, especially when the entire magnet is in the solenoid as South Pole is moving away from one end (Induce current to create a North Pole at this end to try and 'attract it') and North Pole is approaching the other end (Inducing current to create a North Pole also at this end to try and 'repel it')
Much confusion?
Last edited: