smallcattle
Member
Consider binomial expansion (1+x)^n
1. prove that nC0 + nC1 + nC2 + nC3 +..... + nCn = 2^n
2. prove that nC1 + nC3 + nC5 +... = 2^(n-1)
3. from (1+x)^n(1+x)^n = (1+x)^2n and comparing the coefficient of x^(n+1) prove (nC0)(nC1) + (nC1)(nC2) + (nC2)(nC3) + .... + (nC(n-1))(nCn) = 2n! / (n-1)!(n+1)!
thx
1. prove that nC0 + nC1 + nC2 + nC3 +..... + nCn = 2^n
2. prove that nC1 + nC3 + nC5 +... = 2^(n-1)
3. from (1+x)^n(1+x)^n = (1+x)^2n and comparing the coefficient of x^(n+1) prove (nC0)(nC1) + (nC1)(nC2) + (nC2)(nC3) + .... + (nC(n-1))(nCn) = 2n! / (n-1)!(n+1)!
thx