• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

Another Complex Number Question... (1 Viewer)

Joined
Jan 13, 2011
Messages
354
Gender
Male
HSC
N/A
finding th modulus for 35 is fairly standard, just mod = sqrt ( (real part)^2 + (imag part)^2 )

= sqrt ( ( 1+cosx)^2 + (sin(x))^2 ) = sqrt ( 2 +2cosx )

then using double angle results cosx = 2 (cos(x/2) )^2 -1 , then sub in and mod is done

argument is a fair bit harder
 
Joined
Jan 13, 2011
Messages
354
Gender
Male
HSC
N/A
when you go from sin (x/2) / cos ( x/2) = sqrt ( (1-cosx)/ ( 1+cosx) ) I think I kinda know what did , but im thinking there is 90% chance that the person that asked the question has no idea what you did lol

Also, I must say I am very impressed someone doing gen maths could do these questions :p
 
Joined
Jan 13, 2011
Messages
354
Gender
Male
HSC
N/A
ahh I gotcha, and the third part to that questions is relatvely easy,

just a fairly standard binomial question where you take n=4

ie consider ( 1 + ( cosx+ i sinx ) ) ^4 and then expand it using binomial theorm and use the theorm ( cos(x) + isin(x) ) ^n = cos(nx) + i sin(nx)

then equate real and imaginary parts

etc
etc

but most 4unit students wouldnt have seen that yet, most school leave binomial theorm as the last chapter of 3unit math
 

ella-m

New Member
Joined
Jan 12, 2011
Messages
26
Gender
Female
HSC
2011
Thanks Heapppss bored of fail 2 & ohexploitable.... your help is much appreciated :D
 
Joined
Jan 13, 2011
Messages
354
Gender
Male
HSC
N/A
but can you also do 34 part ii?
following from that.

now it tells us that this is a real number/expression ( it says z + 1/z = k, where k is real )

so that means its imaginary part must be zero

therefore y ( x^2 +y^2 -1) / ( x^2 + y^2 ) =0

and setting each factor equal to zero gives

y=0 , or x^2 +y^2 =1

im so cluesless on the other part :|, been try to sub in the values and shit and still cnt get anywhere
 
Last edited:

deterministic

Member
Joined
Jul 23, 2010
Messages
423
Gender
Male
HSC
2009
Suppose y=0, then z+1/z=x+1/x=k
so |k|=|x+1/x|=|(x^2+1)/x|
we use the basic inequality of x^2+1>=2x (Based on (x-1)^2>=0)
Then |k| = |(x^2+1)/x| >= |(2x)/x|=2 so |k|>=2

Suppose x^2+y^2=1:
Then |x|<=1 (as x and y are real numbers)
so subbing (x^2+y^2=1) into the equation for k will give us:
k= x(1+1)/1= 2x
Since |x|<=1, then |k|= |2x|=2|x|<=2*1=2 so |k|<=2
 
Joined
Dec 31, 2009
Messages
4,741
Location
sarajevo
Gender
Female
HSC
2015
Uni Grad
2017
Suppose y=0, then z+1/z=x+1/x=k
so |k|=|x+1/x|=|(x^2+1)/x|
we use the basic inequality of x^2+1>=2x (Based on (x-1)^2>=0)
Then |k| = |(x^2+1)/x| >= |(2x)/x|=2 so |k|>=2

Suppose x^2+y^2=1:
Then |x|<=1 (as x and y are real numbers)
so subbing (x^2+y^2=1) into the equation for k will give us:
k= x(1+1)/1= 2x
Since |x|<=1, then |k|= |2x|=2|x|<=2*1=2 so |k|<=2
I gave your post some protection :p





-----











-----







 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top