u-borat said:
1.45 < 1 + 1/2^2 + 1/3^2 + ...+1/99^2 <1.99
Well, to prove that 1.45 < 1 + 1/2^2 + 1/3^2 + ...+1/99^2,
consider the graph of 1/x^2.
From the graph,
I{1->100} 1/x^2 < 1 + 1/2^2 + 1/3^2 + ... + 1/99^2,
that is taking the higher/left value of the function values as the retangle height, i.e. if function values are 1/n^2 and 1/(n+1)^2, retangle length = 1/n^2.
Therefore, 1 + 1/2^2 + 1/3^2 + ... + 1/99^2 represents the summation of the retangular areas, which is more than the actual value of the integral.
However, since the graph is a decreasing function, therefore approximation using trapezium gives an area value that is less than the area value from approximation using retangles, that is:
Summation of trapezium areas from 1->100 < 1 + 1/2^2 + 1/3^2 + ... + 1/99^2.
At the x-values n and n+1, the function values are 1/n^2 and 1/(n+1)^2.
Area of trapezium
= 1/2(Sum of length of parallel sides)(Width)
= 1/2(1/n^2 + 1/(n+1)^2)(1)
= 1/2(1/n^2 + 1/(n+1)^2)
Therefore, summation of trapezium areas from 1->100
= 1/2(1/1^2 + 1/2^2) + 1/2(1/2^2+1/3^2) + 1/2(1/3^2+1/4^2) + ... + 1/2(1/98^2+1/99^2)
= 1/2(1/1^2 + 2/2^2 + 2/3^2 + 2/4^2 + ... + 2/98^2 + 1/99^2)
= 1/2(1/1^2 + 1/99^2) + (1/2^2 + 1/3^2 + 1/4^2 + ... + 1/98^2)
= 1/2(1/1^2 + 1/99^2) + (Sum of retangles - 1/1^2 - 1/99^2)
= (Sum of retangles) - 1/2(1/1^2 + 1/99^2)
< 1.99 - 1/2(1/1^2 + 1/99^2)
= 1.489948985
Therefore, summation of trapezium areas from 1->100 < 1.489948985
However, consider summation up to the 6th term = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 = 1.511797092 > 1.489948985
Since 1 + 1/2^2 + 1/3^2 + ...+1/99^2 > 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36,
Therefore, 1 + 1/2^2 + 1/3^2 + ...+1/99^2 > summation of trapezium areas.
1.489948985 < 1 + 1/2^2 + 1/3^2 + ...+1/99^2, and since 1.45 < 1.489948985,
1.45 < 1 + 1/2^2 + 1/3^2 + ...+1/99^2.
Note: It 's a very messy method, but since you can't immediately generalize that summation of trapezium areas from 1->100 < 1.489948985 < 1 + 1/2^2 + 1/3^2 + ...+1/99^2, its the only way i can get the answer for now.