Ans to haque's partial fraction bashfest:
the q is slightly wrong imo, it is sigma[k=1 to k=infinity][1/k(k+1)...(k+p)]
Split this fraction into 2 parts:
1/k(k+1)...(k+p) = 1/p[1/k(k+1)...(k+p-1) - 1/(k+1)(k+2)...(k+p)]
when k=1, 1/1.2.3...(p+1) = 1/p[[1/1.2.3...p]-[1/2.3.4...(p+1)]]
when k=2, 1/2.3.4...(p+2) = 1/p[[1/2.3.4...(p+1)]-[1/3.4.5...(p+2)]]
when k=3, 1/3.4.5...(p+3)=1/p[[1/3.4.5...(p+2)]-[1/4.5.6...(p+3)]]
...
when k=n, 1/n(n+1)(n+2)...(n+p)=1/p[[1/n(n+1)...(n+p-1)]-[1/(n+1)(n+2)...(n+p)]
This is a telescoping sum, when u add the above statements, every expression on the RHS cancels except the first and last
ie
sigma[k=1 to k=infinity][1/k(k+1)...(k+p)]=lim[n->infinity]1/p[[1/p!]-[1/(n+1)(n+2)...(n+p)]]
=1/p*p!
as required
nice q haque, where is it from? i havent seen many examples on telescoping sums in any 4u textbooks