$\noindent Let $f(x) = x \ln x -x^2$, $x>0$. Then $f^\prime (x) = \ln x + 1 -2x$ and $f'' (x) = \frac{1}{x} -2$. So $f''(x) =0$ if and only if $x=\frac{1}{2}$, and it is clear that $f'' (x)$ indeed changes sign here. So the inflection point is at $x =\frac{1}{2}$. At this point, $y =...