Note that p4'(x) = p3(x) for all x. Also, p4"(x) = p2(x) for all x. We've shown that p2(x) is a positive definite quadratic, so that means the second derivative of p4 is always positive. This means the minimum of p4 will be a global min.
Now, to find this min., set p4'(x) = p3(x) = 0. (There is...