$\noindent Use the fact (Inverse Function Theorem) that if $b=f(a)$, $g\equiv f^{-1}$, and $f$ is differentiable at $a$ with non-zero derivative, then $g^\prime (b) = \frac{1}{f^\prime (a)}$.$
$\noindent 1) Note $f^\prime (x) = 2(x-1), x >1$. Note the range of $f$ is $\left \{y\in \mathbb{R}:y...