$\noindent Let $I = \int_{0}^{1}x^{3} \left(x^{4} - 3\right)^{4}\, \mathrm{d}x$. Let $u = x^{4} - 3$, so $\mathrm{d}u = 4x^{3}\, \mathrm{d}x \Rightarrow x^{3}\, \mathrm{d} x = \frac{1}{4}\mathrm{d}u $. \textsl{For the limits, when $x = 0$, $u = 0 - 3 = -3$, and when $x = 1$, $u = 1 - 3 = -2$.}...