Let\ v=x^x.
\ln v=x\ln x
\frac{dv}{v}=\left(1+\ln x\right)dx
When\ x=0.25,\ v=0.25^{0.25}=\frac{1}{\sqrt{2}}.
When\ x=0.5,\ v=0.5^{0.5}=\frac{1}{\sqrt{2}}.
\int_{0.25}^{0.5}\left(1+\ln x\right)\sin\left(2x^x\right)dx
=\int_{\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}}\frac{\sin\left(2v\right)}{v}dv
=0