\int^{x=1}_{x=-3} \frac{1}{\sqrt{x+3}} \, dx
Let x = u^2-3, then dx = 2u\, du
The integral becomes
\int^{u=2}_{u=0} \frac{2u}{\sqrt{u^2}} \, du
(you can choose either u=2 or u=-2, it doesn't change the answer)
= \int^{u=2}_{u=0} \frac{2u}{|u|} \, du
= \int^{u=2}_{u=0} \frac{2u}{u}...