Re: MX2 Integration Marathon
$Let \; $\displaystyle A = \sum_{k=1}^{n}\frac{n}{n^2+kn+k^2}$\; and $\displaystyle B = \sum_{k=0}^{n-1}\frac{n}{n^2+kn+k^2}.$
$for \;$n=1,2,3,4,..........,$\; Then\; which \; one \; is \; Leargest...$
Thanks Square3root Using Yours Hint.
$Using Integration by parts for second $
$Let $\displaystyle I = \int_{\frac{\pi}{2}}^{\pi}x\cdot \cot xdx = \left[x\cdot \ln(\sin x)\right]_{\frac{\pi}{2}}^{\pi}-\int_{\frac{\pi}{2}}^{\pi}\ln (\sin x)dx$
Now How can I solve after that
$Evaluation of $\displaystyle \int_{0}^{\pi}x\cdot \cot x dx$
$I have Tried like this way.$
$Here $\displaystyle \cot x$ is $0$at $\displaystyle x = \frac{\pi}{2}$.
$So we can break integral$
$ as $\displaystyle \int_{0}^{\frac{\pi}{2}}x\cdot \cot xdx +\int_{\frac{\pi}{2}}^{\pi}x\cdot \cot x...