• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

Search results

  1. O

    Proposed changes to the Mathematics syllabus: Thoughts?

    One of the three options being proposed for physics (and chemistry as well) late last year which BOSTES were seeking feedback on, was a return to a standard, introductory-level physics course (essentially something akin to what we had pre-2001). Although the proposal was a little light on...
  2. O

    Proposed changes to the Mathematics syllabus: Thoughts?

    I am guessing many students find first-year physics harder than 4 Unit Maths since it is most likely their first ever exposure to real physics. There is absolutely no relation between the real physics taught at universities with that light weigh puff piece known as HSC Physics. The latter is...
  3. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: Help i'm trapped in the title and can only speak once every 2 years $\noindent I will assume $n \neq 0. \begin{align*}I &= \int 20n x^{5n-1} \tan^{-1}\left( \frac{(x^n-1)x^n(x^n+1)}{(x^{2n}-\sqrt{3}x^n+1)(x^{2n}+\sqrt{3}x^n+1)} \right)\,dx\\&= \int 20 n x^{5n - 1} \tan^{-1} \left...
  4. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent For those who wish to keep it purely real, various product-to-sum and sum-to-product identities for the trig functions can be used to find each of the sums. For the general case we will consider $\frac{\sum^{n - 1}_{k = 1} \sin k\theta}{\sum^{n -...
  5. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent \textbf{Next Question} $\noindent Find $\int \frac{\sin x + \sin 2x + \sin 3x + \sin 4x}{\cos x + \cos 2x + \cos 3x + \cos 4x} \, dx
  6. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent I will show the second result directly. Let$ I_k = \int^1_0 x^k (1 - x)^{n - k} \, dx. $\noindent Now $I_0 = \int^1_0 (1 - x)^n \, dx = \int^1_0 x^n \, dx = \frac{1}{n + 1}. \begin{align*}I_k &= \left [\frac{x^{k + 1}}{k + 1} (1 - x)^{n -...
  7. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent \textbf{Next Question} $\noindent Find $ \int \frac{(2 - x^2) e^x}{(1 - x) \sqrt{1 - x^2}} \, dx.
  8. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: Help i'm trapped in the title and can only speak once every 2 years $\noindent Please let me know if there is a simpler way to do this one. $\noindent Let $V = \int \tan^{-1} (2^{2n - 1} x^2) \, dx.$ Now let $2^{2n - 1} x^2 = \tan \theta, 2^{2n} x \, dx = \sec^2 \theta \, d\theta$...
  9. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent Of course this one can be directly found using a partial fraction decomposition, but to do so is a pretty hard slog. Instead, we will first try and manipulate the integrand a bit. \begin{align*}\int \frac{dx}{(x^4 - 1)^2} &= \frac{1}{4} \int...
  10. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent \textbf{Next Question}$ $\noindent Find $ \int \frac{\sin x}{\sin (x - a) \sin (x - b)} \, dx, \quad a \neq b.
  11. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent Consider the finite product term first. Note that$ \begin{align*} \sin x &= 2 \sin \frac{x}{2} \cos \frac{x}{2} = 2^1 \sin \frac{x}{2^1} \cos \frac{x}{2^1}\\&= 2 \cdot 2 \sin \frac{x}{4} \cos \frac{x}{4} \cdot \cos \frac{x}{2} = 2^2 \sin...
  12. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent \textbf{Next Question}$ $\noindent Evaluate $\int^5_0 \frac{|x - 1|}{|x - 2| + |x - 4|} \, dx.
  13. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent In case anyone would like to see how this one is done. $\noindent Let $I = \int_0^1{\frac{1}{(x^2-x+1)(e^{2x-1}+1)}} \, dx $\noindent Using a so-called ``boarder flip'' we have:$ \begin{align*}I &= \int^1_0 \frac{dx}{[(1 - x)^2 - (1 - x)...
  14. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon \begin{align*}\int \frac{2x - 3}{x(x - 1)(x- 2)(x - 3) + 2} \, dx &= \int \frac{2x - 3}{x (x - 3) \cdot (x - 2)(x - 3) + 2} \, dx\\&= \int \frac{2x - 3}{(x^2 - 3x)(x^2 - 3x + 2) + 2} \, dx\end{align*} $\noindent Let $u = x^2 - 3x, du = (2x - 3) \, dx$ so...
  15. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent \textbf{Next Question}$ $\noindent Find $\int \frac{\cos 5x - \cos 4x}{1 - \cos 3x} \, dx. $\noindent I hope this one requires a little bit more work than ``inspection'' to find.$
  16. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent If possible, could someone please pick up and post a copy of the questions to this forum after it has been held. I would be interested in seeing the types of questions they ask. Thanks.$
  17. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent \textbf{Next Question} $\noindent Find $\int \frac{\cos 5x + \cos 4x}{1 - 2 \cos 3x} \, dx$.
  18. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent Let $n = -k$ where $k \in \mathbb{N}. \begin{align*}\int \frac{dx}{1 - \sqrt[n]{x}} &= \int \frac{dx}{1 - x^{-1/k}} = \int \frac{x^{1/k}}{x^{1/k} - 1} \, dx.\end{align*} $\noindent Now let $u = x^{1/k}, dx = k u^{k - 1} \, du.$ Thus$...
  19. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon Oh yes. Silly me
  20. O

    HSC 2016 MX2 Integration Marathon (archive)

    Re: MX2 2016 Integration Marathon $\noindent Provided $n \neq 0$. When $n = 0$ we just have $\frac{1}{\sqrt{2}} \ln |x| + \cal{C}.
Top