Re: MX2 2015 Integration Marathon
$ let $ \cos^{-1}(x) = \alpha \\ cos(\alpha) = x \\ $Drawing a triangle, we can get all three sides relating to $ \alpha \\ $ Therefore, $ \int_{0}^{1} \sin({\cos^{-1}{x}) \\ = \int_{0}^{1} \sin(\alpha) \\ = \int_{0}^{1} \sqrt{1-x^{2}} \\ $ The integral can...