• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

Search results

  1. D

    Inv Trig

    The other two; are these answers correct?: $1) $ y = tan^{-1}\sqrt{x^2 - 1} \\ \\ \text { Domain: } x \leq -1 $ or $ x \geq 1 \text { and Range: } 0 \leq y < \frac {\pi}{2} \\ \\ \\ $2) $ y = cos^{-1}(e^x) \\ \\ \text{ Domain: } -\infty < x \leq 0 \text { and Range: } 0...
  2. D

    Inv Trig

    Is last one: sin^{-1} \frac {\sqrt {15} + \sqrt 8}{12}??
  3. D

    complex evaluation

    Nice diagram. But the 3 red lines must be equal in length, being radii of the unit circle.
  4. D

    complex evaluation

    z_1 = cis \theta \cdots (0 \leq \theta \leq \frac {\pi}{2}) You can argue geometrically that the sum of the squares of the distances remains unchanged (is invariant) when we rotate the figure anticlockwise until theta = 0 (your special case) or any other angle.
  5. D

    complex evaluation

    z_1 \text{ not necessarily } = 1 but answer still = 6. z_1 = cis\theta; $ $ z_2 = cis(\theta + \frac{2\pi}{3}); $ $ z_3 = cis(\theta + \frac {4\pi}{3})\\ \\ |z_1 -1|^2 + |z_2 - 1|^2 + |z_3-1|^2 = (z_1-1)\overline{(z_1 - 1)} + (z_2 - 1)\overline{(z_2 - 1)} + (z_3 - 1)\overline{(z_3 - 1)}\\...
  6. D

    Proofs 🥲

    For Q5: \text {Assume true for }n=k \geq 6 \implies \frac{1}{k!} < \frac {1}{e^k}\\ \\ \therefore \frac {1}{(k+1)!} = \frac {1}{k!} \times \frac {1}{k+1} < \frac {1}{e^k} \times \frac {1}{k+1} < \frac {1}{e^k} + \frac {1}{e} = \frac {1}{e^{k+1}} \\ \\ \text {since, for k greater than 5: }...
  7. D

    complex no.

    See Note-2 above.
  8. D

    complex no.

    Q8(e) The 2 values are related to the roots of: 4x^2+2x-1 =0, $ viz $ \frac {-1 \pm \sqrt 5}{4}\\ \\ $So: $ sin\frac {\pi}{10} = \frac {-1+\sqrt 5}{4} $ and $ sin \frac {3\pi}{10} = - \frac{-1-\sqrt 5 }{4} = \frac {1+\sqrt 5}{4} Note: 1) (4x^2+bx+c)^2 =16x^4 + b^2x^2 + c^2 +2(4bx^3 +...
  9. D

    integration via parts

    a) \int xlnxdx = \frac{1}{2} \int lnxdx^2 = \frac{1}{2} x^2 lnx - \frac {1}{2} \int x^2 dlnx = \cdots -\frac{1}{2} \int x^2 \times \frac {1}{x}dx \\ \\ = \frac {1}{2}x^2lnx - \frac {1}{4} x^2 + C b) \int x(ln x)^2dx = \frac {1}{2} \int (ln x)^2dx^2 = \frac {1}{2}x^2(ln x)^2 - \frac {1}{2}...
  10. D

    How do I memorise my quotes better and more succinctly?

    I think the process of writing down whatever you want to memorise is far more effective than repeated recitation. You should write it down, try to recall, try writing it down again as far as you can by recall, referring to the original the parts you cannot recall. Repeat this process until you...
  11. D

    complex II

    Looks like it. 5x^4-11x^3+16x^2-11x+5 = x^2(5(x^2+\frac{1}{x^2}) -11(x+\frac{1}{x}) + 16) = 0
  12. D

    complex no.

    I think \overrightarrow {OC} = \sqrt 3 i\omega OBC is an equilateral triangle \angle AOC \text { is right-angled and }\overrightarrow {OC} \text { is therefore a multiple of } i\omega; \text { indeed: } \sqrt 3 i\omega \\ \\ \text {since: }OC = \sqrt 3 \times OA $ as $ tan\frac {\pi}{3} =...
  13. D

    complex no.

    What's the question?
  14. D

    complex no.

    Thank you. You know I struggle with LaTeX. Now you know why my proof comes out in dribs and drabs.
  15. D

    complex no.

    Let OAEB be a //gram. \overrightarrow {OE} = z_1 + z_2 \\ \\ \overrightarrow {DB} =\overrightarrow {DO} + \overrightarrow {OB} = z_1 + z_2 \\ \\ \overrightarrow {DB} = \overrightarrow {OE} \implies DOEB \text { is a //gram } \\ \\ \overrightarrow {AB} = z_2 - z_1 \\ \\ \overrightarrow {AC} =...
  16. D

    complex q

    Let M be intersection of AC & BD and O the Origin \overrightarrow {OC} = \sqrt 3 + (1+\sqrt 3)i\\ \\ \overrightarrow {OA} = 1 \\ \\ \overrightarrow {OM} = \frac{1}{2} (\overrightarrow {OA} + \overrightarrow {OC}) = \frac {1}{2} (1 + \sqrt 3 + (1 + \sqrt 3)i) = \frac {1+\sqrt 3}{2} + \frac...
  17. D

    BoS meet up

    Can I come?
  18. D

    More Trig (because I'm stupid)

    No. You're not stupid. It took me a while to do it. Not that straightforward. You can derive, if necessary, that: 2sinAsinB = cos(A-B) - cos(A+B) from: cos(A+B) = cosAcosB - sinAsinB and cos(A-B) = cosAcosB + sinAsinB $Now: $ cos2A = 2cos^2A - 1 \\ \\ 2sin4Asin2A = cos(4A-2A) -...
  19. D

    induction q

    Can show to be true for n=3 \text {Now assume true for } 3 \leq n \leq k , $ and $ k \geq 3 \text {(Strong Law)}\\ \\ \therefore U_k = 2^k + 5^k \\ \\ \therefore U_{k+1} = 7U_k - 10 U_{k-1} = 7(2^k + 5^k) - 10(2^{k-1} + 5^{k-1}) \\ \\ = 7\times2^k + 7\times 5^k - 10 \times 2^{k-1} - 10 \times...
  20. D

    Is it worth doing 10 units for HSC?

    "worth doing"? "safe doing"?
Top