Re: MATH1231/1241/1251 SOS Thread
Short answer: The Taylor series of a function is a specific power series associated to a given function centred at a given point. A power series is a more general concept and need not be related to a function in the same way that a Taylor series is.
Related info that might clarify the concepts further:
Any formal expression of the form:
is said to be a formal power series centred at c. This expression obviously converges at z=c, but need not converge anywhere else. In fact, the root test tells you that this series additionally converges absolutely precisely in the interior of a disk with radius (possibly 0 or inf) that can be computed in terms of the coefficients. Hence such a power series defines a function on some disk iff the coefficients don't increase too fast.
Now let's go the other direction. Say we already have a function, and we would like to obtain a series expression. (This might be useful because truncating the series at a finite number of terms gives you a polynomial. Polynomials are nice, so if we can approximate a function by a polynomial, we often make it easier to prove things about the function.) Suppose our function f is nice enough that we can find a power series (ie find a sequence of coefficients) that actually converges to our function on some small disk centred at say c (we say such functions f are analytic, and this property is quite strong). Then standard facts from analysis say we can differentiate this power series term by term to obtain the derivatives of this function. Doing so and putting z=c, we see that we must in fact have
Ie. if a smooth function is equal to a power series with positive radius of convergence centred at a point, the coefficients must have this precise relationship with the derivatives of f at c.
This motivates us to look at such series (which we call the Taylor series of f) even when f is not analytic. Now in this case, even if the function is smooth (infinitely differentiable) the Taylor series need not converge to the function itself (consider the function f(x)=e^{-1/x} for positive x, f(x)=0 otherwise and try to Taylor expand at 0.) However, if f is k-times differentiable, we can still put asymptotic estimates on the error of the finite Taylor approximations as z->c. This is the content of Taylor's theorem.