My answer to a) is 5/9Open to all. And the method IS related to a past HSC question.
Those numbers look good to me .My answer to a) is 5/9
My answer to b) is 1+√(⅔)
I will post my solutions iff my answers are verified to be correct.
I think braintic is asking for part (b) what length x (or L) of segment we should ask for in order for the probability that X ≤ L is 1/3, where X := |A – B|, where A and B are the r.v.'s corresponding to the positions of the two cuts.
Oh wait, I see what you're getting at. No, when I said let the interval length be L, I was referring to the entire interval, not it's segment.I think braintic is asking for part (b) what length x (or L) of segment we should ask for in order for the probability that X ≤ L is 1/3, where X := |A – B|, where A and B are the r.v.'s corresponding to the positions of the two cuts.
(In other words, the inverse CDF of X evaluated at 1/3.)
So unless I've misinterpreted something, I think we'd need x to be the solution with the negative root, i.e. 1 – √(2/3). With this x, the probability that X ≤ x will be 1/3. Can't use 1 + √(2/3), because the probability that X ≤ 1 + √(2/3) is trivially 1, because the difference |A – B| (which is X, the length of the inner segment) is always going to be between 0 and 1.
In general, I believe that Pr(X ≤ x) will be 1 – (1 – x)2, for 0 ≤ x ≤ 1 (with Pr(X ≤ x) being 0 if x < 0 and 1 if x > 1). So we set 1 – (1 – x)2 equal to 1/3 for braintic's part (b), and note that 1 – x is non-negative when deciding on which root to take.
I interpreted it as asking what length should we specify (instead of 1) for the whole interval, in order to have the probability of the middle interval having length at most 1/3 equal to 1/3?I think braintic is asking for part (b) what length x (or L) of segment we should ask for in order for the probability that X ≤ L is 1/3, where X := |A – B|, where A and B are the r.v.'s corresponding to the positions of the two cuts.
(In other words, the inverse CDF of X evaluated at 1/3.)
So unless I've misinterpreted something, I think we'd need x to be the solution with the negative root, i.e. 1 – √(2/3). With this x, the probability that X ≤ x will be 1/3. Can't use 1 + √(2/3), because the probability that X ≤ 1 + √(2/3) is trivially 1, because the difference |A – B| (which is X, the length of the inner segment) is always going to be between 0 and 1.
In general, I believe that Pr(X ≤ x) will be 1 – (1 – x)2, for 0 ≤ x ≤ 1 (with Pr(X ≤ x) being 0 if x < 0 and 1 if x > 1). So we set 1 – (1 – x)2 equal to 1/3 for braintic's part (b), and note that 1 – x is non-negative when deciding on which root to take.
"a" correct answer? (that implies more than one, methinks)I interpreted it as asking what length should we specify (instead of 1) for the whole interval, in order to have the probability of the middle interval having length at most 1/3 equal to 1/3?
Paradoxica is a correct answer to this question.
Ah I see. I (mis)interpreted it as asking for what middle length (out of the unit interval) should we ask for in order for that probability (Pr(|A – B| ≤ x) to be 1/3, and didn't read Paradoxica's solution too closely, and thought he was doing the same problem I was thinking of.I interpreted it as asking what length should we specify (instead of 1) for the whole interval, in order to have the probability of the middle interval having length at most 1/3 equal to 1/3?
Paradoxica is a correct answer to this question.
Fair enough. I was briefly confused when I first read the question, because I was unsure exactly what it was asking.Ah I see. I (mis)interpreted it as asking for what middle length (out of the unit interval) should we ask for in order for that probability (Pr(|A – B| ≤ x) to be 1/3, and didn't read Paradoxica's solution too closely, and thought he was doing the same problem I was thinking of.
The reason I thought this was that I misinterpreted braintic's "the answer to part (a)" as meaning "Pr(|A - B| ≤ x)" (where A and B are uniform on the unit interval, i.e. just the same as the initial r.v.'s), and the "length" in question referring to the x.
That could well have been his intended question. This is why having rigorous notation for probabilistic statements and their proofs is important .Ah I see. I (mis)interpreted it as asking for what middle length (out of the unit interval) should we ask for in order for that probability (Pr(|A – B| ≤ x) to be 1/3, and didn't read Paradoxica's solution too closely, and thought he was doing the same problem I was thinking of.
The reason I thought this was that I misinterpreted braintic's "the answer to part (a)" as meaning "Pr(|A - B| ≤ x)" (where A and B are uniform on the unit interval, i.e. just the same as the initial r.v.'s), and the "length" in question referring to the x.
Yeah . So for clarification purposes, what was the Q. you and Paradoxica were doing again? Basically, this?:That could well have been his intended question. This is why having rigorous notation for probabilistic statements and their proofs is important .
Yes, that is indeed what we interpreted it as.Yeah . So for clarification purposes, what was the Q. you and Paradoxica were doing again? Basically, this?:
Let A, B be (independent and) uniformly distributed on [0, L] (L > 0, real). Suppose Pr(|A – B| ≤ 1/3) = 1/3. Find L.
??
Let x be in [0,1]. Consider the unit square in the a-b plane (the region where A,B's values are taken). Basically find the area on the unit square satisfying |a – b| ≤ x. To do this, sketch the lines b = a+x and b = a-x, and you'll see they intersect the square in some places and cut off these triangles. The desired region is the square minus these triangles. The two triangles have combined area (1 - x)2. (This is found by finding the coordinates of the intersection points of the lines with the square and then using simple "base times height".)Yes, that is indeed what we interpreted it as.
For completeness, could you (unless you already have) give your solution as well?
Interesting how the two interpretations give complementary answers which arise from the same equation...Let x be in [0,1]. Consider the unit square in the a-b plane (the region where A,B's values are taken). Basically find the area on the unit square satisfying |a – b| ≤ . To do this, sketch the lines b = a+x and b = a-x, and you'll see they intersect the square in some places and cut off these triangles. The desired region is the square minus these triangles. The two triangles have combined area (1 - x)2. (This is found by finding the coordinates of the intersection points of the lines with the square and then using simple "base times height".)
So the desired region has area 1 – (1 - x)2 (subtracting the triangles' area from the unit square). Due to the uniform distributions, this is exactly the probability that |A – B| ≤ x.
So Pr(X ≤ x) = 1 – (1 - x)2, for 0 ≤ x ≤ 1. So set this equal to 1/3 for the desired x, and remember than 1 - x ≥ 0 when deciding on the root.