... yeah I basically stated that. So why does it calculate power loss and NOT power? I must be confused by something.This calculates power dissipated (essentially, heat loss) by a conductor.
So in a conductor, the higher the current flow, the more the electrons are flowing and thus the more kinetic collisions occur in the metallic lattice of the transmission lines. The lower the current flow, the less kinetic collisions that occur.... yeah I basically stated that. So why does it calculate power loss and NOT power? I must be confused by something.
Its behind the increased kinetic collision in the lattice.so we know the derivation of P_total = VI, but how about P_loss = I^2R?
In HSC they tend to hide the details about how power is the rate of work (or change in kinetic energy) done.So in a conductor, the higher the current flow, the more the electrons are flowing and thus the more kinetic collisions occur in the metallic lattice of the transmission lines. The lower the current flow, the less kinetic collisions that occur.
I understand the qualitative explanation, but not the quantitative derivation. From what I've seen, P = I^2R is derived from P = VI and V = IR (Ohm's Law). Substituting Ohm's Law into P = VI gives P = I^2R, but I don't understand why P now gives you 'power loss' instead of 'total power'.Its behind the increased kinetic collision in the lattice. So in a conductor, the higher the current flow, the more the electrons are flowing and thus the more kinetic collisions occur in the metallic lattice of the transmission lines. The lower the current flow, the less kinetic collisions that occur.
Yeah this was my initial question but no one answered it (satisfactorily). I have a solution but I'll tell you after school today.I understand the qualitative explanation, but not the quantitative derivation. From what I've seen, P = I^2R is derived from P = VI and V = IR (Ohm's Law). Substituting Ohm's Law into P = VI gives P = I^2R, but I don't understand why P now gives you 'power loss' instead of 'total power'.
Wait doessnt that come in I2I?Its behind the increased kinetic collision in the lattice.
In HSC they tend to hide the details about how power is the rate of work (or change in kinetic energy) done.
Oh if this helps lemme clear it:I'm pretty bad with electricity and this whole section is confusing me. Power loss in transmission lines is given by P = I^2 R
But isn't this calculating power? Help please!
Yep, this was what I was going to say to EpaX. The V in P = IV is different to the V in V = IR. By subbing in the voltage drop V = IR across the transmission line into P = IV, you are effectively calculating the energy "drop" (loss) across that line.Wait doessnt that come in I2I?
Oh if this helps lemme clear it:
P (transmitted)=VI is the formula that shows the initial relationship between power transmitted. Note: This is not the power lost. So you can calculate either of the quantities from this. Then but V(drop)=IR and note resistance means energy loss and the voltage in this equation is the voltage drop. So when you calculate the voltage drop you can calculate P(loss)=V(drop)^2/R or P(loss)=I^2R. And to directly answer your question again P=VI, again repeating is the POWER TRANSMITTED however resistance means energy loss, therefore in Ohms law the voltage refers to the VOLTAGE DROP (since voltage is Joules/Coloumb since energy decreases voltage must decrease) due to Resistance. So when you sub in to find P=V^2/R, the P represent the POWER LOSS since the V represents the VOLTAGE DROP over the TRANSMISSION LINES. And you know that the Voltage DROP occurs therefore the current must also change since RESISTANCE IS CONSTANT and when you sub in terms of current in the Power Equation with the current transmitted you are taking into account VOLTAGE DROP OVER TRANSMISSION.
Hope that Helps.
Its year 9 general knowledge.Wait doessnt that come in I2I?
Wait doessnt that come in I2I?
Oh if this helps lemme clear it:
P (transmitted)=VI is the formula that shows the initial relationship between power transmitted. Note: This is not the power lost. So you can calculate either of the quantities from this. Then but V(drop)=IR and note resistance means energy loss and the voltage in this equation is the voltage drop. So when you calculate the voltage drop you can calculate P(loss)=V(drop)^2/R or P(loss)=I^2R. And to directly answer your question again P=VI, again repeating is the POWER TRANSMITTED however resistance means energy loss, therefore in Ohms law the voltage refers to the VOLTAGE DROP (since voltage is Joules/Coloumb since energy decreases voltage must decrease) due to Resistance. So when you sub in to find P=V^2/R, the P represent the POWER LOSS since the V represents the VOLTAGE DROP over the TRANSMISSION LINES. And you know that the Voltage DROP occurs therefore the current must also change since RESISTANCE IS CONSTANT and when you sub in terms of current in the Power Equation with the current transmitted you are taking into account VOLTAGE DROP OVER TRANSMISSION.
Hope that Helps.
Well it didn't really help when you derived P = IV and then the next line stated Ploss = I^2R, completely unanswering the question. So I just buckled down and figured it out myself 20 minutes later.Don't wait 3 months later like how QZP did.
Yeah my friends complain I'm bad at explaining things. So I tend to not be very clear.Well it didn't really help when you derived P = IV and then the next line stated Ploss = I^2R, completely unanswering the question. So I just buckled down and figured it out myself 20 minutes later.
Its year 9 general knowledge.
It is used extensively in I2I calculations. For the question asked, I said what u said.
It is used extensively in I2I calculations. For the question asked, I said what u said.
Energy is conserved in a way such that:
Generally yes. Its not the fact that you are incorrect, its just that some wording was a little "misplaced", but its perfectly fine.uhh, so am I correct?