Part (i) can also be done by dividing by z^2 so you get (z^2+1/z^2) + (z+1/z) + 1 = 0, then using the result z^n+1/z^n=2cos(nƟ) solving for Ɵ and interpreting solutions in terms of cis(Ɵ) by taking into account the principle argument -π≤Ɵ≤π when deciding which angles to select. Well since the polynomial is of degree 4 and real, there should be 2 conjugate pairs of roots.
Part (ii), just like HeroicPanda mentioned, express the roots in linear factors as such (z-A)(z-A(conjugate))(z-B)(z-B(conjugate)) and by expanding you should get a product of 2 quadratic factors. Just a quick tip, when you expand (z-A)(z-A(conjugate)), it becomes z^2-2Re(A)+1. The main purpose for why they make you express in the form of 2 quadratic factors is because its the simplest form in which the polynomial can be factorised over the real field.