Re: HSC 2012 Marathon
2^x = e^[log(2^x)]
= e^[xlog(2)]
= (e^x)*(e^[x(log2 - 1)])
.'. integral of 2^x dx = integral (e^x)*(e^[x(log2 - 1)]) dx
let u = e^x
du = (e^x)*dx
when x = 1, u = e
when x= 0, u = 1
.'. integral 2^x dx = integral u^(log2 - 1) du
= [(u^log2)/log2] from 1 to e
= 2/log2 - 1/log2
= 1/log2
might be wrong :/
2^x = e^[log(2^x)]
= e^[xlog(2)]
= (e^x)*(e^[x(log2 - 1)])
.'. integral of 2^x dx = integral (e^x)*(e^[x(log2 - 1)]) dx
let u = e^x
du = (e^x)*dx
when x = 1, u = e
when x= 0, u = 1
.'. integral 2^x dx = integral u^(log2 - 1) du
= [(u^log2)/log2] from 1 to e
= 2/log2 - 1/log2
= 1/log2
might be wrong :/
Last edited: