HSC 2012 MX1 Marathon #2 (archive) (2 Viewers)

bleakarcher

Active Member
Joined
Jul 8, 2011
Messages
1,509
Gender
Male
HSC
2013
Re: HSC 2012 Marathon :)

A polynomials question.

CodeCogsEqn.gif
 
Last edited:

bleakarcher

Active Member
Joined
Jul 8, 2011
Messages
1,509
Gender
Male
HSC
2013
Re: HSC 2012 Marathon :)

^ a lot of you will probably recognise that one. If you do, please leave it for someone else lol.
 

math man

Member
Joined
Sep 19, 2009
Messages
503
Location
Sydney
Gender
Male
HSC
N/A
Re: HSC 2012 Marathon :)

hmm, if you write the polynomial as a product of n terms then take the derivative using the special nth product rule, then use a trig sub...you will get no where
so i will leave it for the hsc kids to figure out what they are properly meant to do
 

bleakarcher

Active Member
Joined
Jul 8, 2011
Messages
1,509
Gender
Male
HSC
2013
Re: HSC 2012 Marathon :)

alright

anyone gonna give the question a go?
 

math man

Member
Joined
Sep 19, 2009
Messages
503
Location
Sydney
Gender
Male
HSC
N/A
Re: HSC 2012 Marathon :)

ok ill give it a go in words.

Express z^n -1 as a procduct of its n roots in factored form, divide both sides by z-1, which is a factor of z^n-1. now the hsc kids finish it for me... i i i...forgot what to do next.
 

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,439
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=z^n-1=0\\ \\ LHS=z^n-1=(z-1)(z-z_{1})(z-z_{2})...(z-z_{n-1})\\ \\ divide~both~sides~by~(z-1)\\ \\ z_{n-1}@plus;z_{n-2}@plus;z^{_{n-3}}@plus;...@plus;z@plus;1=(z-z_{1})(z-z_{2})...(z-z_{n-1})\\ \\ let~n=1\\ \\ n=(1-z_{1})(1-z_{2})(1-z_{3})...(1-z_{n-1})~as~required\\ \\ new~question\\ find~the~first~derivative~of~ln(\frac{1}{\sqrt{sin(x)}})" target="_blank"><img src="http://latex.codecogs.com/gif.latex?z^n-1=0\\ \\ LHS=z^n-1=(z-1)(z-z_{1})(z-z_{2})...(z-z_{n-1})\\ \\ divide~both~sides~by~(z-1)\\ \\ z_{n-1}+z_{n-2}+z^{_{n-3}}+...+z+1=(z-z_{1})(z-z_{2})...(z-z_{n-1})\\ \\ let~n=1\\ \\ n=(1-z_{1})(1-z_{2})(1-z_{3})...(1-z_{n-1})~as~required\\ \\ new~question\\ find~the~first~derivative~of~ln(\frac{1}{\sqrt{sin(x)}})" title="z^n-1=0\\ \\ LHS=z^n-1=(z-1)(z-z_{1})(z-z_{2})...(z-z_{n-1})\\ \\ divide~both~sides~by~(z-1)\\ \\ z_{n-1}+z_{n-2}+z^{_{n-3}}+...+z+1=(z-z_{1})(z-z_{2})...(z-z_{n-1})\\ \\ let~n=1\\ \\ n=(1-z_{1})(1-z_{2})(1-z_{3})...(1-z_{n-1})~as~required\\ \\ new~question\\ find~the~first~derivative~of~ln(\frac{1}{\sqrt{sin(x)}})" /></a>

edit: difficulty, medium
 
Last edited:

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,256
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)



<a href="http://www.codecogs.com/eqnedit.php?latex=\textup{Evaluate }\int_{0}^{1}2^xdx" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\textup{Evaluate }\int_{0}^{1}2^xdx" title="\textup{Evaluate }\int_{0}^{1}2^xdx" /></a>

Medium-hard
 

zeebobDD

Member
Joined
Oct 23, 2011
Messages
414
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

-cotx / 2 using the chain rule twice
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\frac{d}{dx} ~ \ln(\tfrac{1}{\sqrt{sinx}}) , using ~ \ln f(x) = \frac{f'(x)}{f(x)} \\ \frac{d}{dx}~\tfrac{1}{\sqrt{sinx}} = \frac{d}{dx} (sinx)^{-1/2} \\\\ = -\frac{1}{2}(sinx)^{-3/2}*cosx = \frac{1}{2}*\frac{-cosx}{sin^{3/2}x} \\\\\therefore \frac{d}{dx} ~ \ln(\tfrac{1}{\sqrt{sinx}}) = \frac{1}{2}*\frac{-cosx}{sin^{3/2}x} ~ * \sqrt{sinx} \\\\ = \frac{1}{2} * \frac{-cosx}{sinx} \\\\ = \frac{-cotx}{2}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\frac{d}{dx} ~ \ln(\tfrac{1}{\sqrt{sinx}}) , using ~ \ln f(x) = \frac{f'(x)}{f(x)} \\ \frac{d}{dx}~\tfrac{1}{\sqrt{sinx}} = \frac{d}{dx} (sinx)^{-1/2} \\\\ = -\frac{1}{2}(sinx)^{-3/2}*cosx = \frac{1}{2}*\frac{-cosx}{sin^{3/2}x} \\\\\therefore \frac{d}{dx} ~ \ln(\tfrac{1}{\sqrt{sinx}}) = \frac{1}{2}*\frac{-cosx}{sin^{3/2}x} ~ * \sqrt{sinx} \\\\ = \frac{1}{2} * \frac{-cosx}{sinx} \\\\ = \frac{-cotx}{2}" title="\frac{d}{dx} ~ \ln(\tfrac{1}{\sqrt{sinx}}) , using ~ \ln f(x) = \frac{f'(x)}{f(x)} \\ \frac{d}{dx}~\tfrac{1}{\sqrt{sinx}} = \frac{d}{dx} (sinx)^{-1/2} \\\\ = -\frac{1}{2}(sinx)^{-3/2}*cosx = \frac{1}{2}*\frac{-cosx}{sin^{3/2}x} \\\\\therefore \frac{d}{dx} ~ \ln(\tfrac{1}{\sqrt{sinx}}) = \frac{1}{2}*\frac{-cosx}{sin^{3/2}x} ~ * \sqrt{sinx} \\\\ = \frac{1}{2} * \frac{-cosx}{sinx} \\\\ = \frac{-cotx}{2}" /></a>
 

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,439
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" title="\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)~/~ln(2)~dunno~how~to~do~numbered~box~brackets\\ =1/ln(2)" /></a>

whoops fail answer lol, it should be 1/ln(2)

new question, at a guess for not having done the question, medium to hard

<a href="http://www.codecogs.com/eqnedit.php?latex=2sin(\theta -\frac{\pi}{3})=cos(\theta @plus;\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a@plus;b\sqrt{3},~where~a~and~b~are~integers." target="_blank"><img src="http://latex.codecogs.com/gif.latex?2sin(\theta -\frac{\pi}{3})=cos(\theta +\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a+b\sqrt{3},~where~a~and~b~are~integers." title="2sin(\theta -\frac{\pi}{3})=cos(\theta +\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a+b\sqrt{3},~where~a~and~b~are~integers." /></a>
 
Last edited:

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" title="\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" /></a>
<a href="http://www.codecogs.com/eqnedit.php?latex=\left [(x)\ln(2) \right ]_{0}^{1}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\left [(x)\ln(2) \right ]_{0}^{1}" title="\left [(x)\ln(2) \right ]_{0}^{1}" /></a>

best i could get it

\left(\right) x_a^b
 

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,256
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" title="\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)~/~ln(2)~dunno~how~to~do~numbered~box~brackets\\ =1/ln(2)" /></a>

whoops fail answer lol, it should be 1/ln(2)


new question, at a guess for not having done the question, medium to hard

<a href="http://www.codecogs.com/eqnedit.php?latex=2sin(\theta -\frac{\pi}{3})=cos(\theta @plus;\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a@plus;b\sqrt{3},~where~a~and~b~are~integers." target="_blank"><img src="http://latex.codecogs.com/gif.latex?2sin(\theta -\frac{\pi}{3})=cos(\theta +\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a+b\sqrt{3},~where~a~and~b~are~integers." title="2sin(\theta -\frac{\pi}{3})=cos(\theta +\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a+b\sqrt{3},~where~a~and~b~are~integers." /></a>
This isn't the answer- maybe try again or someone else can have a go.
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)ln(2)~dunno~how~to~do~numbered~box~brackets\\ =ln(2)" title="\int_{0}^{1}2^xdx\\ let~u=2^x\\ du=ln(2)2^xdx\\ at~x=1,u=2\\ at~x=0,u=1\\ =\int_{1}^{2}\frac{1}{ln(2)}\\ =(x)~/~ln(2)~dunno~how~to~do~numbered~box~brackets\\ =1/ln(2)" /></a>

whoops fail answer lol, it should be 1/ln(2)

new question, at a guess for not having done the question, medium to hard

<a href="http://www.codecogs.com/eqnedit.php?latex=2sin(\theta -\frac{\pi}{3})=cos(\theta @plus;\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a@plus;b\sqrt{3},~where~a~and~b~are~integers." target="_blank"><img src="http://latex.codecogs.com/gif.latex?2sin(\theta -\frac{\pi}{3})=cos(\theta +\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a+b\sqrt{3},~where~a~and~b~are~integers." title="2sin(\theta -\frac{\pi}{3})=cos(\theta +\frac{\pi }{3})\\ express~tan(\theta )~in~the~form~a+b\sqrt{3},~where~a~and~b~are~integers." /></a>
<a href="http://www.codecogs.com/eqnedit.php?latex=tan(\theta ) = -3-\sqrt{3}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?tan(\theta ) = -3-\sqrt{3}" title="tan(\theta ) = -3-\sqrt{3}" /></a>

right??
 

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,439
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=tan(\theta ) = -3-\sqrt{3}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?tan(\theta ) = -3-\sqrt{3}" title="tan(\theta ) = -3-\sqrt{3}" /></a>

right??
nope, go again :) post your working and i will check where you have gone wrong.
 

nightweaver066

Well-Known Member
Joined
Jul 7, 2010
Messages
1,585
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)



<a href="http://www.codecogs.com/eqnedit.php?latex=\textup{Evaluate }\int_{0}^{1}2^xdx" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\textup{Evaluate }\int_{0}^{1}2^xdx" title="\textup{Evaluate }\int_{0}^{1}2^xdx" /></a>

Medium-hard
= [(2^x)/ln2] limits 0 to 1
= 2/ln(2) - 1/ln(2)
= 1/ln(2)
 

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top