• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

Polynomial problem (1 Viewer)

Restrictory1256

New Member
Joined
Nov 17, 2007
Messages
2
Gender
Male
HSC
2008
I'm finding trouble to solve the following question:

Find the cubic equation whose roots are the sqaures of that of
x^3 + 2x +1=0.

Any help would be greatful
 

ssglain

Member
Joined
Sep 18, 2006
Messages
444
Location
lost in a Calabi-Yau
Gender
Female
HSC
2007
Let the roots of x³ + 2x + 1 = 0 be a, b, c. The question requires us to find a cubic polynomial whose roots are a², b², c². I can think of two methods to do this. Since the question is posted under MX1, let's start with the method that uses knowledge from 2U/MX1 courses.

Method 1:
Consider x³ + 2x + 1 = 0. Using sums and products of roots:
a + b + c = 0
ab + bc + ca = 2
abc = -1

Let the required cubic polynomial be in the form of px³ + qx² + rx + s = 0. Using sums and products of roots:
a² + b² + c² = -q/p
a²b² + b²c² + c²a² = r/p
a²b²c² = -s/p

However,
a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)
.: -q/p = 0² - 2(2) = -4 --> q = 4p

a²b² + b²c² + c²a² = (ab + bc + ca)²- 2(a²bc + ab²c + abc²) = (ab + bc + ca)² - 2abc(a + b + c)
.: r/p = 2² - 2(-1)(0) = 4 --> r = 4p

a²b²c² = (abc)²
.: -s/p = (-1)² --> s = -p

So the required cubic polynomial can be written as px³ + 4px² + 4px - p = 0.
Dividing by p gives x³ + 4x² + 4x - 1 = 0 as the simplest form.

As you can see, Method 1 can become impossibly tiresome if dealing with polynomials of higher degrees. The next method is the standard MX2 procedure of finding the equation of a polynomial whose roots are related to those of another given polynomial. Even if you don't do MX2, this trick is probably still worthwhile knowing.

Method 2:
Consider x³ + 2x + 1 = 0, with roots a, b, c.
Let y = x². Then clearly P(y) = 0 has roots a², b², c².

y = x² --> x = √y
Substituting this into x³ + 2x + 1 = 0:
(√y)³ + 2√y + 1 = 0
(√y)(y + 2) = -1
[(√y)(y + 2)]² = (-1)²
y(y² + 4y + 4) = 1
.: P(y) = y³ + 4y² + 4y - 1 = 0 has roots a², b², c².

Since x and y are both arbitrary variables, the required cubic polynomial can be expressed in terms of x as x³ + 4x² + 4x - 1 = 0.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top