2.
Draw a triangle to work out that, cos<sup>-1</sup>(3/5) is equal to tan<sup>-1</sup>(4/3).
So it becomes:
2tan<sup>-1</sup>(2)+tan<sup>-1</sup>(4/3)=pi
Let tan<sup>-1</sup>(2)=A and tan<sup>-1</sup>(4/3)=B
2A+B=pi
Take the tan of both sides
tan(2A+B)=0
(tan2A+tanB)/(1-tan2AtanB)=0
tan2A+tanB=0
(2tanA)/(1-tan<sup>2</sup>A)+tanB=0
Sub in A and B to show that the LHS is equal to zero:
LHS=[2tan(tan<sup>-1</sup>2)]/[1-tan<sup>2</sup>(tan<sup>-1</sup>2)]+tan[tan<sup>-1</sup>4/3]
[2.2]/[1-2<sup>2</sup>]+4/3 = -4/3+4/3 = 0 = RHS.
There is probably a shorter way but I can't remember.