Use the fact that [maths]f(x)=(ax-b)^2+(cx-d)^2\geq 0[/maths] to prove [maths]|ab+cd|\leq \sqrt{a^2+c^2}\sqrt{b^2+d^2}[/maths] (a,b,c,d real)
It's obvious if you just use [maths]2abcd\leq a^2d^2+b^2c^2[/maths] to prove [maths]\sqrt{(ab+cd)^2}\leq \sqrt{(a^2+c^2)(b^2+d^2)}[/maths] but how would you do the question using f(x) ?
It's obvious if you just use [maths]2abcd\leq a^2d^2+b^2c^2[/maths] to prove [maths]\sqrt{(ab+cd)^2}\leq \sqrt{(a^2+c^2)(b^2+d^2)}[/maths] but how would you do the question using f(x) ?