Trebla said:
√1 + √2 + √3 + ........ + √n ≤ (4n + 3)√n / 6
assume true n = k:
√1 + √2 + √3 + ........ + √k + √(k+1) ≤
[(4k + 3)√k / 6] + √(k+1)
n = k+1:
√1 + √2 + √3 + ........ + √k + √(k+1) ≤
[4(k+1) + 3]√(k+1) / 6
need to show:
[(4k + 3)√k / 6] + √(k+1) ≤
[4(k+1) + 3]√(k+1) / 6
(4k + 3)√k + 6√(k+1) ≤ 4k√(k+1) + 4√(k+1) + 3√(k+1)
(4k + 3)√k ≤ (4k + 1)√(k+1)
k(4k + 3)^2 ≤ (k+1)(4k + 1)^2
16k^3 + 24k^2 + 9k ≤ (k+1)(16k^2 + 8k + 1)
16k^3 + 24k^2 + 9k ≤ (16k^3 + 8k^2 + k) + (16k^2 + 8k + 1)
0 ≤ 1 true
therefore if true for n=k, true for n=k+1