Define the proposition P(n): arg(z^n)=n*arg(z), n integral
When n=1, LHS=arg(z)=RHS
Hence, P(1) is true
Assuming P(k) is true,
ie P(k):arg(z^k)=k*arg(z), k integral
Try to prove for P(k+1):
P(k+1):arg(z^[k+1])=(k+1)arg(z)
Now, LHS=arg((z^k)*z)=arg(z^k)+arg(z)=k*arg(z)+arg(z)=(k+1)arg(z)=RHS
Hence, if P(k) holds P(k+1) holds also
Since P(1) is true, P(2) must be true and so on for all integers n>0
btw dude if u dont understand my prove for LHS=RHS, here r the laws i assumed u already knew:
z^(k+1)=(z^k)*(z^1) as (x^m)*(x^n)=x^(m+n)
also:
arg[z1*z2]=arg(z1)+arg(z2)