imoO
Member
- Joined
- Apr 6, 2008
- Messages
- 302
- Gender
- Male
- HSC
- 2009
Question:
An airline company marks the price of a flight at $400, less a group discount based on the number of bookings made. The price, R dollars for each person in the group of x people is R = 400 - 0.5x
The cost of running the flight is a fixed cost of $5000 plus $150 per person. Show that the profit on a flight of a group of x people is (250x - 0.5x^2 - 5000) dollars. Hence find the group size that maximises profit.
Comments:
I have no clue as to where to start. dy/dx=????
lol....
thanks in advance for help.
An airline company marks the price of a flight at $400, less a group discount based on the number of bookings made. The price, R dollars for each person in the group of x people is R = 400 - 0.5x
The cost of running the flight is a fixed cost of $5000 plus $150 per person. Show that the profit on a flight of a group of x people is (250x - 0.5x^2 - 5000) dollars. Hence find the group size that maximises profit.
Comments:
I have no clue as to where to start. dy/dx=????
lol....
thanks in advance for help.